matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBil-Formen und Teilräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Bil-Formen und Teilräume
Bil-Formen und Teilräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bil-Formen und Teilräume: Korrektur
Status: (Frage) überfällig Status 
Datum: 13:28 Do 03.06.2010
Autor: carlosfritz

Aufgabe
Sei (V; [mm] \beta [/mm] ) endl.-dim. orthogonaler [mm] \IR-VR. [/mm] U,W sind Teilräme von V mit [mm] \beta [/mm] ist pos.-definit auf U und [mm] -\beta [/mm] pos.-definit auf W und U+W=V
Sei B eine Orthogonalbasis von V und r die Anzahl der [mm] v\in [/mm] B mit [mm] \beta(v,v) [/mm] > 0 und s die Anzahl der [mm] v\in [/mm] B mit [mm] \beta [/mm] (v,v) < 0.

zz.: dimU=r, dimW=s und [mm] \{W,U\} [/mm] ist direkte Zerlegung von V und [mm] \beta [/mm] ist n.a.

Hallo,
ich weiss nicht so recht wie ich an die Dimension rankomme und ob das alles so korrekt ist.
Das mit dem r und s sieht nach dem Satz von Sylvester aus.

a.) Ich fang mal an mit der direkten Zerlegung.
Klar ist, dass [mm] U\bigcap [/mm] W [mm] =\{0_{V}\} [/mm] ist. (Nun bin ich doch shon fertig, da [mm] \beta [/mm] symm. ist oder?)


b.) [mm] \beta [/mm] ist n.a. ist auch klar, da nach a.) gilt: [mm] \forall v\in V\backslash \{0_{V}\} [/mm] : [mm] \beta [/mm] (v,v ) [mm] \not= [/mm] 0.
und [mm] 0_{V} [/mm] ist immer El von [mm] V^{\perp} [/mm] (stimmt dies tatsächlich - oder bilde´ich mir das nur ein?)

Nun zur Dimension.
Sei n:=dimV. Ich weiss nach a.) gilt dimU+dimW=dimV.
Und ich weiss immerhin, dass es eine Orthogonal-Basis [mm] B_{U} [/mm] von U gibt mit [mm] \beta(v,v)>0 [/mm] f.a. [mm] v\in B_{U} [/mm]
Ebenso gibt es eine Orthogonal-Basis von [mm] B_{W} [/mm]  von W mit [mm] \beta(v,v)<0 [/mm] f.a. [mm] v\in B_{W} [/mm]

Darf ich nun sagen, dass [mm] B_{W}\bigcup B_{U} [/mm] Basis von V ist (da {U,W} dir. Zerlegung/Summe ist)?

Dann wäre mit dem Satz von Sylvester auch die Dimensionsfrage gelöst.

Ich bin mir aber bei der ganzen Sache nicht wirklich sicher.

Ich danke vielmals fürs drüberschauen!


        
Bezug
Bil-Formen und Teilräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 06.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]