matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBijektivität und Umkehrfunktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Bijektivität und Umkehrfunktio
Bijektivität und Umkehrfunktio < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität und Umkehrfunktio: Hilfe :)
Status: (Frage) beantwortet Status 
Datum: 02:00 Di 17.01.2012
Autor: Winny

Aufgabe
Seien A, B Mengen. Zeigen Sie:
Für jede surjektive Abbildung g: A->B und alle T von oder gleich B gilt g(g^-1(T))=T

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wenn ich mir das ganze aufmale ist es ziehmlich klar, denn die Menge T ist ja nach Aufgabenstellung surj, da T Teilmenge B ist. Weiter ist g(g−1(T)) die Umkehrfunktion zu g^-1(T). Da T surj in A abgebildet wird, muss ja auch die Umkehrfunktion von g^-1(T) surj, womit g(g−1(S))=S gilt.

Ich kann nun leider nicht bewerten wie korrekt mein Aufschrieb ist. Könnte mir da jemand helfen? Danke!

        
Bezug
Bijektivität und Umkehrfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 07:16 Di 17.01.2012
Autor: fred97


> Seien A, B Mengen. Zeigen Sie:
>  Für jede surjektive Abbildung g: A->B und alle T von oder
> gleich B gilt g(g^-1(T))=T
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wenn ich mir das ganze aufmale ist es ziehmlich klar, denn
> die Menge T ist ja nach Aufgabenstellung surj, da T
> Teilmenge B ist. Weiter ist g(g−1(T)) die Umkehrfunktion
> zu g^-1(T). Da T surj in A abgebildet wird, muss ja auch
> die Umkehrfunktion von g^-1(T) surj, womit g(g−1(S))=S
> gilt.
>  
> Ich kann nun leider nicht bewerten wie korrekt mein
> Aufschrieb ist. Könnte mir da jemand helfen? Danke!


1. g ist nur surjektiv, muß also keine Umkehrfunkrion haben.

2. Ich vemute , dass die Aufgabenstellung so lautet:

Ist g: A->B  surjektiv, so gilt für jede Teilmenge T von B:

                      [mm] g(g^{-1}(T))=T [/mm] .


[mm] g^{-1}(T) [/mm] ist eine Menge ! Sie ist so definiert:

                  [mm] g^{-1}(T):=\{a \in A: g(a) \in T\}. [/mm]

So , jetzt nochmal ran an die Aufgabe.

FRED

            

Bezug
                
Bezug
Bijektivität und Umkehrfunktio: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:00 Di 17.01.2012
Autor: Winny

Aufgabe
Seien A, B Mengen. Zeigen Sie:
>  Für jede surjektive Abbildung g: A->B und alle T von oder
> gleich B gilt g(g^-1(T))=T
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wenn ich mir das ganze aufmale ist es ziehmlich klar, denn
> die Menge T ist ja nach Aufgabenstellung surj, da T
> Teilmenge B ist. Weiter ist g(g−1(T)) die Umkehrfunktion
> zu g^-1(T). Da T surj in A abgebildet wird, muss ja auch
> die Umkehrfunktion von g^-1(T) surj, womit g(g−1(S))=S
> gilt.
>  
> Ich kann nun leider nicht bewerten wie korrekt mein
> Aufschrieb ist. Könnte mir da jemand helfen? Danke!


1. g ist nur surjektiv, muß also keine Umkehrfunkrion haben.

2. Ich vemute , dass die Aufgabenstellung so lautet:

Für jede surjektive Abbildung g: A->B  und alle Teilmenge T von B gilt

                      $ [mm] g(g^{-1}(T))=T [/mm] $ .


$ [mm] g^{-1}(T) [/mm] $ ist eine Menge ! Sie ist so definiert:

                  $ [mm] g^{-1}(T):=\{a \in A: g(a) \in T\}. [/mm] $

So , jetzt nochmal ran an die Aufgabe.

FRED

So, dann ist $ [mm] g^{-1}(T):=\{a \in A: g(a) \in T\} [/mm] $ also Urbild nicht Umkehrfunktion.
Auf $ [mm] g^{-1}(T) [/mm] $ wenden wir unser surj g an, also $ [mm] g(g^{-1}(T)) [/mm] $.

Es geht dann weiter:
Da g surj, gilt $ g := für alle y [mm] \in [/mm] B existiert ein x [mm] \in [/mm] A : f(x)= y $
Umgangssprachlich: mind ein Pfeil kommt von A im Bild B an.

Habe ich das soweit richtig verstanden?


Bezug
                        
Bezug
Bijektivität und Umkehrfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Di 17.01.2012
Autor: fred97


> Seien A, B Mengen. Zeigen Sie:
>  >  Für jede surjektive Abbildung g: A->B und alle T von
> oder
>  > gleich B gilt g(g^-1(T))=T

>  >  Ich habe diese Frage in keinem Forum auf anderen
>  > Internetseiten gestellt.

>  >  
> > Wenn ich mir das ganze aufmale ist es ziehmlich klar, denn
>  > die Menge T ist ja nach Aufgabenstellung surj, da T

>  > Teilmenge B ist. Weiter ist g(g−1(T)) die

> Umkehrfunktion
>  > zu g^-1(T). Da T surj in A abgebildet wird, muss ja

> auch
>  > die Umkehrfunktion von g^-1(T) surj, womit

> g(g−1(S))=S
>  > gilt.

>  >  
> > Ich kann nun leider nicht bewerten wie korrekt mein
>  > Aufschrieb ist. Könnte mir da jemand helfen? Danke!

>  
>
> 1. g ist nur surjektiv, muß also keine Umkehrfunkrion
> haben.
>  
> 2. Ich vemute , dass die Aufgabenstellung so lautet:
>  
> Für jede surjektive Abbildung g: A->B  und alle Teilmenge
> T von B gilt
>  
> [mm]g(g^{-1}(T))=T[/mm] .
>  
>
> [mm]g^{-1}(T)[/mm] ist eine Menge ! Sie ist so definiert:
>  
> [mm]g^{-1}(T):=\{a \in A: g(a) \in T\}.[/mm]
>  
> So , jetzt nochmal ran an die Aufgabe.
>  
> FRED
>  So, dann ist [mm]g^{-1}(T):=\{a \in A: g(a) \in T\}[/mm] also
> Urbild nicht Umkehrfunktion.

Ja


>  Auf [mm]g^{-1}(T)[/mm] wenden wir unser surj g an, also
> [mm]g(g^{-1}(T)) [/mm].

Weiter ?

>
> Es geht dann weiter:
>  Da g surj, gilt [mm]g := für alle y \in B existiert ein x \in A : f(x)= y[/mm]

?? Die Funktion heißt g !!!. Also: zu jedem y [mm] \in [/mm] B gibt es ein x [mm] \in [/mm] A mit: g(x)=y

> Umgangssprachlich: mind ein Pfeil kommt von A im Bild B

Das ist sehr schwammig !

> an.
>  
> Habe ich das soweit richtig verstanden?

Ich denke schon. Aber gezeigt hast Du bislang nichts.

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]