matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBijektivität der Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Bijektivität der Abbildung
Bijektivität der Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität der Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 27.10.2018
Autor: Grundkurshaber

Aufgabe
Seien X und Y zwei nicht-leere Mengen und seien f:X→Y und g:Y→X. Sei f◦g
die Hintereinanderausführung von (erst) g und (dann) f, d.h. es gilt f◦g=f(g(x)). Ferner sei idX die Identität aufX so, dass für alle x∈X gilt idX(x)=x. Sei nun g◦f= idX. Zeigen Sie, dass f injektiv und g surjektiv ist.

verstehe ich das richtig, das die Identität von X = g ◦ f ist, also x identisch zu g ◦ f ist.

Ich weiß, dass bei Injektivität x = x' und f (x) [mm] \not= [/mm] f(x') gilt und bei Surjektvität, für alle x  [mm] \in [/mm] B ein x [mm] \in [/mm] D exisitert, fpr das gilt f (x) = f(y).

Wie zeige ich dass, f injektiv und g surjektiv ist?

        
Bezug
Bijektivität der Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Sa 27.10.2018
Autor: ChopSuey


> Seien X und Y zwei nicht-leere Mengen und seien f:X→Y und
> g:Y→X. Sei f◦g
>  die Hintereinanderausführung von (erst) g und (dann) f,
> d.h. es gilt f◦g=f(g(x)). Ferner sei idX die Identität
> aufX so, dass für alle x∈X gilt idX(x)=x. Sei nun g◦f=
> idX. Zeigen Sie, dass f injektiv und g surjektiv ist.


>  verstehe ich das richtig, das die Identität von X = g ◦
> f ist, also x identisch zu g ◦ f ist.

Das ergibt überhaupt keinen Sinn. $X$ ist eine Menge, $g [mm] \circ [/mm] f$ ist eine Abbildung bzw. eine Komposition zweier Abbildungen $f,g$. $x$ ist ein Element aus $X$. Das sind alles grundverschiedene Dinge.

>  
> Ich weiß, dass bei Injektivität x = x' und f (x) [mm]\not=[/mm]
> f(x') gilt und bei Surjektvität, für alle x  [mm]\in[/mm] B ein x
> [mm]\in[/mm] D exisitert, fpr das gilt f (x) = f(y).

Das ergibt auch keinen Sinn. Ich weiß auch nicht wo $B$ und $D$ herkommen. Sei $f:X [mm] \to [/mm] Y$ eine Abbildung. $f$ ist surjektiv wenn zu jedem $y [mm] \in [/mm] Y$ ein $x [mm] \in [/mm] X$ existiert so dass $f(x)=y$ gilt.


>  
> Wie zeige ich dass, f injektiv und g surjektiv ist?

Schau dir die Definitionen zu Abbildungen noch einmal an, insbesondere zur Identität, zur Komposition von Abbildungen und zur Injektivität, Surjektivität und Bijektivität.

LG,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]