matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBijektion Untergruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Bijektion Untergruppen
Bijektion Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektion Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 06.01.2013
Autor: Expo

Aufgabe
Sei G eine Gruppe und N ein Normalteiler in G. Zeigen Sie, dass die Abbildung
{U ist eine Untergruppe von G mit U [mm] \supset [/mm] N }-> {V ist eine Untergruppe von G/N}
U-> U/N
bijektiv ist.

Guten Tag,
leider habe ich noch keinen sinnvollen Ansatz gefunden, ich vermutet aber, das ich die Zielmenge V in einen andere Form bringen muss um die Abb. auf bijektivität untersuchen zu können.

Mir ist bewusst das dies sehr mager ist, ich bitte euch mir trotzdem zu helfen.
Danke


        
Bezug
Bijektion Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 So 06.01.2013
Autor: hippias

Die "einzige" Abbildung, die wir haben, ist der kanonische Epimorphismus, der jedem [mm] $g\in [/mm] G$ seine Restklasse $gN$ zuordnet. Diese Abbildung induziert eine Abbildung zwischen den beiden Mengen Deiner Problemstellung - vielleicht ist sie sogar bijektiv?

Bezug
                
Bezug
Bijektion Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 So 06.01.2013
Autor: Expo

Ich nehme also die Abb. die g->[g], wobei [g] die jeweilige restklasse ist. Du sprichst nun von einem Epimorphismus, wieso kannst du davon ausgehen das die Abb. Surjektiv ist?

Bezug
                        
Bezug
Bijektion Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 So 06.01.2013
Autor: hippias

Die Abbildung bildet in welche Menge ab? Wie sehen die Elemente dieser Menge aus?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]