matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBiholomorphe Abbildung angeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Biholomorphe Abbildung angeben
Biholomorphe Abbildung angeben < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biholomorphe Abbildung angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 So 22.07.2012
Autor: Schachtel5

Hallo,
ich will zur Übung eine biholomorphe Abbildung von M={z [mm] \in \IC:|z|<1 }\backslash [/mm] { [mm] x\in \IR:0\le [/mm] x<1 } auf den Einheitskreis angeben und mir gelingt das an dem Beispiel nicht so. Wäre super, wenn mir jemand helfen könnte.
Das Prinzip wie ich vorgehe ist mir klar. Habe überlegt, erst M unter f(z)=-z abzubilden, um dann M={z [mm] \in \IC: [/mm] |z|<1 } [mm] \backslash [/mm]  { [mm] x\in \IR [/mm] :-1< x [mm] \le [/mm] 0 } zu bekommen, nur ich will dahin kommen, die obere Halbebene zu kriegen, um dann im letzten Schritt mit der Cayleyabbildung abzubilden. Wenn ich nun mit [mm] g(z)=\wurzel{z} [/mm] arbeite, habe ich dann schonmal die obere Hälfte des Einheitskreises, oder ? Wie kann ich weitermachen?  
Lg

        
Bezug
Biholomorphe Abbildung angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 07:47 Mo 23.07.2012
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin!

>  ich will zur Übung eine biholomorphe Abbildung von M={z
> [mm]\in \IC:|z|<1 }\backslash[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]x\in \IR:0\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

x<1 } auf den

> Einheitskreis angeben und mir gelingt das an dem Beispiel
> nicht so. Wäre super, wenn mir jemand helfen könnte.
>  Das Prinzip wie ich vorgehe ist mir klar. Habe überlegt,
> erst M unter f(z)=-z abzubilden, um dann M={z [mm]\in \IC:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> |z|<1 } [mm]\backslash[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  { [mm]x\in \IR[/mm] :-1< x [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 } zu bekommen,

> nur ich will dahin kommen, die obere Halbebene zu kriegen,
> um dann im letzten Schritt mit der Cayleyabbildung
> abzubilden. Wenn ich nun mit [mm]g(z)=\wurzel{z}[/mm] arbeite, habe
> ich dann schonmal die obere Hälfte des Einheitskreises,
> oder ? Wie kann ich weitermachen?  

Anstelle $g(z) = [mm] \sqrt{z}$ [/mm] wende doch mal den Hauptzweig des Logarithmus an.

LG Felix


Bezug
        
Bezug
Biholomorphe Abbildung angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 07:56 Mo 23.07.2012
Autor: Leopold_Gast

Es geht auch mit der Wurzel. Der Hauptzweig bildet den längs der Strecke von -1 nach 0 aufgeschlitzten Einheitskreis auf die rechte Hälfte des Einheitskreises ab. Wende dann die Abbildung

[mm]z \mapsto z - \frac{1}{z}[/mm]

an. Worauf bildet sie den rechten Halbkreis ab?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]