matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauBiegespannung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Biegespannung
Biegespannung < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biegespannung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:46 Mi 25.11.2009
Autor: faenwulf

Aufgabe
Gesucht ist die Gleichung der Biegelinie fuer folgendes System:

[Dateianhang nicht öffentlich]

Durchmesser Wellen: 10mm
Laenge Wellen: 400mm
Linke Seite Eingespannt, Rechte Seite frei tragend
Horizontale Kraft: -100N

Hallo,
habe einfach mal eine fea erstellt um das problem ein wenig zu veranschaulichen. Es handelt sich um zwei verbundene wellen die allerdings nur auf einer seite eingespannt sind.
Hab probiert es mit den differentialgelichungen 4. ordnung fuer biegelinen zu loesen.
gesetzte randbedingungen:
linke seite             w'(0) = 0  , w(0) = 0 und  Q(0) = F
rechte seite          w'(l)  = 0

hab somit 4 randbedingungen gefunden, integrationskonstate sind bestimmt. nur es passt nicht. Grund: falsche annahmen. Die rechte seite weisst nicht w'(l) = 0 auf. Hier findet eine kruemmung statt. das balkensystem verschiebt sich nicht genau parallel...
Koordinatensystem hab ich von links nach rechts gesetzt. von x=0 bis x=l=400.

gemand ne idee?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Biegespannung: Hinweise
Status: (Antwort) fertig Status 
Datum: 13:45 Mi 25.11.2009
Autor: Loddar

Hallo faenwulf,

[willkommenvh] !!


Was ist denn mit der Bedingungen infolge Biegemoment (am Gesamtsystem)?

$$M(0) \ = \ [mm] -F*\ell [/mm] \ = \ ...$$
[mm] $$M(\ell) [/mm] \ = \ 0$$

Zudem wirst Du hier m.E. nicht um die Vereinfachung herumkommen, dass die beiden Rundstäbe am rechten Ende parallel sind).

Zudem gibt das Verformungsbild vor, dass auch an der rechten Seite die Verdrehung nahezu vollständig behindert ist und lediglich eine vertikale Verschiebung stattfindet.

Hast Du hier in Deinem System irgendwelche Fesseln angesetzt?


Gruß
Loddar


Bezug
                
Bezug
Biegespannung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:34 Mi 25.11.2009
Autor: faenwulf

Hallo,
danke fuer die fixe Antwort. Nein "Fesseln" wurden nicht gesetzt, das system am rechtem ende ist frei tragend. In diesem Fall ist dier kruemmung am rechtem Ende sehr klein. Dieses aendert sich bei verkleinern des horizontalen Abstandes der Wellen drastisch.
http://opel.landinsicht.net/pics/1259167139.jpg
Nun ist die Spannung hoeher. Mit einer solchen Vereinfachung ignoriere ich leider diesen Effekt. Bin mir nicht ganz sicher ob ich die Staebe wirklich einzeln betrachten kann und die Annahme der symmetrischen Beanspruchung wirklich stimmt.

Mit $ M(0) \ = \ [mm] -F\cdot{}\ell [/mm] \ $
$ M(l) \ = \ 0\  $
$ w'(0) \ = \ 0\   $
$ w(0) \ = \ 0\ $

folgt einer Biegegleichung von:

$ w(x) \ = [mm] \bruch{-F * x^{3}}{6} [/mm] + [mm] \bruch{F * x^{2}}{2} [/mm] $

$ [mm] \sigma(max) [/mm] =204 [mm] \bruch{N}{mm^2} [/mm] $

mit nem Wiederstandsmoment von zwei mal dem eines 10mm Stabes.
Also ich glaub nicht das ich das so betrachten kann. Mit der Annahme
$ w'(l) \ =0$
$ w(0) \ =0$
$ w'(0) \ =0$
$ Q(0) \ =-F$
sieht es schon besser aus:
$ w(x) \ = [mm] \bruch{-F * x^{3}}{6} [/mm] + [mm] \bruch{F * l * x^{2}}{4} [/mm] $
$ [mm] \sigma(max) [/mm] =102 [mm] \bruch{N}{mm^2} [/mm] $

Nur hier bekomm ich eben Probleme sobald die Annahme auf der linken Seite nicht passt. Dies ist der Fall wenn der Abstand der Wellen verkleinert wird. Kann ich das irgenwie mit einbeziehen, gibt es dort ne Uebergangsbedingung? Hatte solch einen Fall noch nicht...

Danke an alle, fuers lesen und mithelfen $:)$

Bezug
                        
Bezug
Biegespannung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 27.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]