matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische GeometrieBezout
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebraische Geometrie" - Bezout
Bezout < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bezout: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:41 So 27.12.2015
Autor: questionpeter

Aufgabe
Bestimme die (nach Bezout) vier Schnittpunkte in [mm] IP_2(\IC) [/mm] der zwei Quadriken [mm] Q_1: x^2+2xy+z^2=0 [/mm] und [mm] Q_2:x^2-y^2+z^2=0 [/mm]

Hallo zusammen,

ich sitze vo diese aufgabe und komme nicht weiter. daher hoffe ich auf eure Hilfe.

ich habe folgendes gemacht:

ich habe die beiden Quadriken gleichgesetzt:

[mm] x^2+2xy+z^2=x^2-y^2+z^2 [/mm]

nach umformen erhalte dann: y=-2x

das habe in [mm] Q_1 [/mm] eingesetzt: [mm] x^2+2x\cdot(-2x)+z^2=0 [/mm]
[mm] \Rightarrow z=\pm\wurzel{3}x [/mm]

damit habe ich dann [mm] Q_1\cap Q_2={[1:-2:\wurzel{3}], [1:-2:-\wurzel{3}]} [/mm]

stimmt das? falls ja wie finde ich die anderen Schnittpunkte?
Dankeschön im voraus.

        
Bezug
Bezout: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 So 27.12.2015
Autor: fred97


> Bestimme die (nach Bezout) vier Schnittpunkte in [mm]IP_2(\IC)[/mm]
> der zwei Quadriken [mm]Q_1: x^2+2xy+z^2=0[/mm] und
> [mm]Q_2:x^2-y^2+z^2=0[/mm]
>  Hallo zusammen,
>  
> ich sitze vo diese aufgabe und komme nicht weiter. daher
> hoffe ich auf eure Hilfe.
>  
> ich habe folgendes gemacht:
>  
> ich habe die beiden Quadriken gleichgesetzt:
>  
> [mm]x^2+2xy+z^2=x^2-y^2+z^2[/mm]
>  
> nach umformen erhalte dann: y=-2x
>  
> das habe in [mm]Q_1[/mm] eingesetzt: [mm]x^2+2x\cdot(-2x)+z^2=0[/mm]
>  [mm]\Rightarrow z=\pm\wurzel{3}x[/mm]
>  
> damit habe ich dann [mm]Q_1\cap Q_2={[1:-2:\wurzel{3}], [1:-2:-\wurzel{3}]}[/mm]
>  
> stimmt das? falls ja wie finde ich die anderen
> Schnittpunkte?
>  Dankeschön im voraus.


Komisch.....

hat denn das Gleichungssystem

  [mm]x^2+2xy+z^2=0[/mm]

  [mm]x^2-y^2+z^2=0[/mm]

nicht unendlich viele Lösungen ?

Ist [mm] $t\in \IR$ [/mm] und setzt man

  $x=t, y=-2t$ und $z= [mm] \pm \wurzel{3}t$, [/mm]

so liefert dies eine Lösung des obigen Systems.

Vielleicht hab ich aber auch etwas falsch verstanden....

FRED

Bezug
        
Bezug
Bezout: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 So 27.12.2015
Autor: abakus


>  
> [mm]x^2+2xy+z^2=x^2-y^2+z^2[/mm]
>  
> nach umformen erhalte dann: y=-2x

Lass mich raten: Du hast während der Umformung auch mal beide Seiten durch y geteilt? Damit sind dir Lösungen des Gleichungssystems verloren gegangen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]