matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBez: eindim. Eigenvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Bez: eindim. Eigenvektor
Bez: eindim. Eigenvektor < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bez: eindim. Eigenvektor: korrekter Bezeichnung?
Status: (Frage) beantwortet Status 
Datum: 22:34 So 12.09.2010
Autor: Sandel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es sei I die Einheitsmatrix.
Ich betrachte einen beliebigen Zeilenvektor, der ja genau einen Eintrag "1" enthält. Kann man diesen als "eindimensionalen Vektor" bezeichnen, auch wenn er in einem höher dimensionalen Raum ist?

Was ist wenn der Zeilenvektor zwei "1" Einträge besitzt: Ist er dann auch "eindimensional", denn schließlich zeigt jeder Vektor in genau eine Richtung und es gilt die Invariante, dass jeder Zeilenvektor linear unabhängig ist.
Brauche die korrekte Bezeichnung für beide Fälle für die textliche Begründung.
Grüße & danke fürs Lesen
Sandel

        
Bezug
Bez: eindim. Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 13.09.2010
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Es sei I die Einheitsmatrix.
> Ich betrachte einen beliebigen Zeilenvektor, der ja genau
> einen Eintrag "1" enthält. Kann man diesen als
> "eindimensionalen Vektor" bezeichnen, auch wenn er in einem
> höher dimensionalen Raum ist?
>  
> Was ist wenn der Zeilenvektor zwei "1" Einträge besitzt:
> Ist er dann auch "eindimensional", denn schließlich zeigt
> jeder Vektor in genau eine Richtung und es gilt die
> Invariante, dass jeder Zeilenvektor linear unabhängig
> ist.
>  Brauche die korrekte Bezeichnung für beide Fälle für
> die textliche Begründung.
>  Grüße & danke fürs Lesen




Wenn Du einen Vekor $a [mm] \in \IR^n$ [/mm] hast und a [mm] \ne [/mm] 0 ist, so ist die lineare Hülle von a, also die Menge

                 [mm] $\{t*a: t \in \IR \}$ [/mm]

ein ein eindimensionaler Unterraum des [mm] \IR^n. [/mm]

a selbst nennt man nicht eindimensional.

FRED

>   Sandel


Bezug
                
Bezug
Bez: eindim. Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mo 13.09.2010
Autor: Sandel

ok, danke.
Bleibt noch die Frage nach einem passenden Begriff für Vektoren die einen, zwei, ... mehrere Einträge bzw Basisvektoren beinhalten.
Grüße
Sandel

Bezug
                        
Bezug
Bez: eindim. Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mo 13.09.2010
Autor: angela.h.b.


> ok, danke.
>  Bleibt noch die Frage nach einem passenden Begriff für
> Vektoren die einen, zwei, ... mehrere Einträge bzw
> Basisvektoren beinhalten.
>  Grüße
>   Sandel

Hallo,

[willkommenmr].

[mm] \vektor{1\\2\\3\\4} [/mm] ist ein Spaltenvektor mit 4 Einträgen.
Oder Du sagst: ein Element des [mm] \IR^4 [/mm] (bzw. [mm] \IQ^4 [/mm] bzw. [mm] \IC^4). [/mm]

Vektoren "beinhalten" keine Basisvektoren.
Und Vektoren haben keine Dimension.

Vektorräume werden von Basisvektoren aufgespannt.
Betrachten wir den Vektorraum, der von den drei Vektoren [mm] v_1:=\vektor{1\\1\\1\\1}, v_2:=\vektor{1\\1\\1\\0}, v_3:=\vektor{1\\1\\0\\0} [/mm] aufgespannt wird.
Die Vektoren [mm] v_1, v_2, v_3 [/mm] sind eine Basis ihrer linearen Hülle [mm] U:==\{a_1v_1+a_2v_2+a_3v_3| a_1, a_2, a_3\in \IR} [/mm]
Der Vektorraum U hat die Dimension 3 (auch wenn die Spaltenvektoren, die  in ihm sind, 4 Einträge haben.)
U ist ein dreidimensionaler Untervektorraum des [mm] \IR^4. [/mm]

Ich hoffe, daß ich Deine Frage richtig verstanden und verständlich beantwortet habe.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]