matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBeweisproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Beweisproblem
Beweisproblem < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisproblem: Roger B Nelson, an .....
Status: (Frage) überfällig Status 
Datum: 20:54 Fr 15.10.2010
Autor: Lorence

Guten Abend,

Es geht um folgendes Buch: Roger B. Nelson, an introduction to Copulas, S. 80, aber das nur am Rande:


Theorem 3.2.6

[mm] \alpha,\beta [/mm] seien Funktionen von I=[0,1] nach R, mit [mm] \alpha(0)=\alpha(1)=\beta(0)=\beta(1)=0. [/mm] C sei eine Funktion der Gestalt: [mm] C(u,v)=u*v+u*(1-u)*[\alpha(v)*(1-u)+\beta(v)*u], [/mm]  dann ist C eine Copula genau dann wenn:

[mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]

für [mm] u_{1}

der Beweis dieses Theorems habe ich verstanden, jetzt kommt der Teil den ich nicht verstehe:



Lemma 3.2.7 Seien [mm] \alpha,\beta [/mm] und C wie oben, dann ist C eine Copula genau dann wenn:

1. [mm] \alpha(v),\beta(v) [/mm] sind absolut stetig
2. [mm] 1+\alpha'(v)*(1-4u+3u^2)+\beta'(v)*(2u-3u^2)\ge0 [/mm]


Also im gesamten muss ich jetzt folgendes Zeigen:

[mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]
[mm] \gdw [/mm]
1. [mm] \alpha(v),\beta(v) [/mm] sind absolut stetig
2. [mm] 1+\alpha'(v)*(1-4u+3u^2)+\beta'(v)*(2u-3u^2)\ge0 [/mm]


Zum Beweis:

[mm] \Rightarrow [/mm] aus [mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]

folgt ja recht schnell für u1=u2=u und [mm] \limes_{v_{2}\rightarrow\v_{1}} [/mm]

aber die Rückrichtung bereitet mir große Kopfschmerzen, ich brauche den Mittelwertsatz und wie man von u wieder auf [mm] u_{1},u_{2} [/mm] kommt.

Es handelt sich um ein rein analytisches Problem, es wird keine Stochastik benötigt (vermute ich).

Hat jemand eine Idee?

Danke im Vorraus

        
Bezug
Beweisproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Sa 16.10.2010
Autor: Lorence

Hat keiner eine Idee? Es handelt sich lediglich um die Anwendung des Mittelwertsatzes!

Gruß Lorence

Bezug
        
Bezug
Beweisproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 17.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]