matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLerngruppe LinAlgBeweisführung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lerngruppe LinAlg" - Beweisführung
Beweisführung < Lerngruppe LinAlg < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisführung: Aufg. 4.6
Status: (Frage) überfällig Status 
Datum: 22:30 Do 23.11.2006
Autor: diego

Aufgabe
Sei K ein Körper, und sei A [mm] \in M_{nn} [/mm] (K) eine invertierbare Matrix. Sei n [mm] \ge [/mm] 2. Beweisen Sie:
1. [mm] det(A^{Ad}) [/mm] = [mm] det(A)^{n-1} [/mm]
2. [mm] (A^{Ad})^{Ad} [/mm] = [mm] det(A)^{n-2}A [/mm]

Hallo,

so jetzt kommen wir zu meiner absoluten Schwachstelle - Beweisführung. Ich habe keine Ahnung wie ich anfangen soll.

Ich fange mal mit erstens an:
Habe überlegt, die Definition von [mm] A^{Ad} [/mm] (für die im Kurs S.228) erstmal einzusetzen:
[mm] det[(-1)^{i+j}det(A_{ji}] [/mm]
Aber da endet meine Idee leider auch schon...
Würde mich über ein paar Tips sehr freuen.

Gruß Yvonne

Eure Hilfen bis jetzt waren aber nicht umsonst, konnte diesmal einige Aufgaben alleine lösen!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Fr 24.11.2006
Autor: Sashman

Moin Vonne!

Hab diese Aufgabe auch noch nicht durch. Aber vielleicht kommst du ja weiter während ich abendmahle :-)

1.)

z.z [mm] $det(A^{Ad})=det(A)^{n-1}$ [/mm]

Sei [mm] $A^{Ad}=B$ [/mm] dann ist zu zeigen:

[mm] $det(B)=det(A)^{n-1}$ [/mm]

nach LaplaceEntwicklung ist

[mm] $det(B)=\sum_{j=1}^n(-1)^{i+j}b_{ij}det(B_{ij})$ [/mm]

die [mm] $b_{ij}$ [/mm] sind Also die Eiträge in $B$ an der Stelle $ij$ und die berechnet sich nach Definition 4.2.2 der Adjunkten (S228) durch

[mm] $b_{ij}=(-1)^{i+j}det(A_{ji})$ [/mm]

Somit ergibt sich für die Determinante der Adjunkten

[mm] $det(B)=\sum_{j=1}^n(-1)^{i+j}((-1)^{i+j}det(A_{ji}))det(B_{ij})=\sum_{j=1}^n det(A_{ji})det(B_{ij})$ [/mm]

So noch n par Formeln die mir so durch den Kopf schwirren und die uns helfen könnten:

$det(AB)=det(A)det(B)$  für quadratische Matrizen

der Adjunktensatz:

[mm] $AA^{Ad}=A^{Ad}A=det(A)I_{n}$ [/mm]

mooment einmal meld mich gleich mit ner Antwort

MfG
Sashman

Bezug
        
Bezug
Beweisführung: Das erste Licht
Status: (Antwort) fertig Status 
Datum: 20:21 Fr 24.11.2006
Autor: Sashman

zu 1)

Hab ischs!

Der Adjunktensatz noch einmal:

[mm] $A^{Ad}A=det(A)I_{n}$ [/mm]

da $A$ invertierbar ist ist auch $det(A)$ invertierbar und wir können beide Seiten mit $det(A)$ erweitern.

Also ist unsere Ausage äquivalent zur Aussage

[mm] $det(A^{Ad})det(A)=det(A)^n$ [/mm]

dann gilt nun folgendes:

[mm] $det(A^{Ad})det(A)=det(A^{Ad}A)=det(det(A)I_n)$ [/mm]

[mm] $(det(A)I_n)$ [/mm] ist eine Diagonalmatrix in [mm] $M_{nn}(K)$ [/mm]

(schau da noch mal nach wie die Determinante berechnet wird)

[mm] $det(A^{Ad})det(A)=det(det(A)I_n)=det(A)^n$ [/mm]

und das war zu zeigen

Puh
MfG erstomol
Sashman

Bezug
                
Bezug
Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Fr 24.11.2006
Autor: diego

Ok, das muss ich jetzt erstmal verarbeiten...
Ich meld mich wieder wenn ich verstanden hab wie du auf was genau kommst....
Du kannst also in aller Ruhe essen...

Bezug
                
Bezug
Beweisführung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 24.11.2006
Autor: diego

Ok, hab mir alles nochmal genau angeschaut und stelle jetzt meine Fragen...

> zu 1)
>  
> Hab ischs!
>  
> Der Adjunktensatz noch einmal:
>  
> [mm]A^{Ad}A=det(A)I_{n}[/mm]
>  
> da [mm]A[/mm] invertierbar ist ist auch [mm]det(A)[/mm] invertierbar und wir
> können beide Seiten mit [mm]det(A)[/mm] erweitern.
>  
> Also ist unsere Ausage äquivalent zur Aussage
>  
> [mm]det(A^{Ad})det(A)=det(A)^n[/mm]
>  
> dann gilt nun folgendes:
>  
> [mm]det(A^{Ad})det(A)=det(A^{Ad}A)=det(det(A)I_n)[/mm]
>  
> [mm](det(A)I_n)[/mm] ist eine Diagonalmatrix in [mm]M_{nn}(K)[/mm]
>  

Warum eine diagonalmatrix?

> (schau da noch mal nach wie die Determinante berechnet
> wird)
>  

wenn ich das jetzt richtig verstanden habe, indem man die Diagonalelemente mit der sarrus Regel berechnet, ansonsten gibt es ja nichts, oder?

> [mm]det(A^{Ad})det(A)=det(det(A)I_n)=det(A)^n[/mm]
>  

Warum zeigen wir, dass [mm] det(a)^n [/mm] wir müssen doch zeigen,dass es [mm] det(A)^n-1 [/mm] ist.

> und das war zu zeigen
>  
> Puh
>  MfG erstomol
>  Sashman


Falls möglich bitte erst so unmathematisch wie möglich antworten, sonst komm ich nicht immer so ganz mit.

Danke

Bezug
                        
Bezug
Beweisführung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Fr 24.11.2006
Autor: Sashman


> Ok, hab mir alles nochmal genau angeschaut und stelle jetzt
> meine Fragen...

Alles klar werd versuchen sie zu beantworten.


>  
> > zu 1)
>  >  
> > Hab ischs!
>  >  
> > Der Adjunktensatz noch einmal:
>  >  
> > [mm]A^{Ad}A=det(A)I_{n}[/mm]
>  >  
> > da [mm]A[/mm] invertierbar ist ist auch [mm]det(A)[/mm] invertierbar und wir
> > können beide Seiten mit [mm]det(A)[/mm] erweitern.
>  >  
> > Also ist unsere Ausage äquivalent zur Aussage
>  >  
> > [mm]det(A^{Ad})det(A)=det(A)^n[/mm]
>  >  
> > dann gilt nun folgendes:
>  >  
> > [mm]det(A^{Ad})det(A)=det(A^{Ad}A)=det(det(A)I_n)[/mm]
>  >  
> > [mm](det(A)I_n)[/mm] ist eine Diagonalmatrix in [mm]M_{nn}(K)[/mm]
>  >  
> Warum eine diagonalmatrix?

[mm] $I_n$ [/mm] ist doch die Einheitsmatrix in [mm] $M_{nn}(K)$ [/mm] und $det(A)$ ist ein Element in $K$ also ist [mm] $det(A)I_n$ [/mm] diejenige Matrix in [mm] $M_{nn}(K)$ [/mm] die in der Diagonalen den Eintrag $det(A)$ hat und deren anderen Einträge alle 0 sind.

>  
> > (schau da noch mal nach wie die Determinante berechnet
> > wird)

siehe dazu Proposition 4.1.7 (S217) Determinanten von Dreiecksmatrizen

>  >  
> wenn ich das jetzt richtig verstanden habe, indem man die
> Diagonalelemente mit der sarrus Regel berechnet, ansonsten
> gibt es ja nichts, oder?

Naja nicht ganz.

Die Sarrus Regel gilt nur für Matrizen aus [mm] $M_{22}(K)$ [/mm] und [mm] $M_{33}(K)$ [/mm]
für alle anderen $n$ NICHT.

Dafür nimmst du dann LaplaceschenEntwicklungssatz oder wenn du viel Zeit hast Leibnizformel oder (besser noch weil alles für große $n$ zu langwierig ist einen Rechner mit einem eigens dafür geschriebenen Progamm - hat hier aber nix zu suchen).

gut zum Beweis:



[mm] \underline{Aufgabe} [/mm]

Sei $K$ ein Körper, und sei [mm] $A\in M_{nn}(K)$ [/mm] eine invertierbare Matrix. Sei [mm] $n\ge [/mm] 2$. Beweisen Sie:

[mm] $det(A^{Ad})=det(A)^{n-1}$ [/mm]


die Determinante ist sozusagen eine Abbildung, die jeder Matrix ein Körperelement zuweist

$det$:  [mm] $M_{nn}(K)\to [/mm] K$

[mm] $\Rightarrow det(A)\in [/mm] K$

da $A$ invertierbar ist [mm] $det(A)\not= [/mm] 0$ und da $K$ ein Körper ist, ist existiert zu $det(A)$ das inverse Element [mm] $det(A)^{-1}$ [/mm]

Für quadratische Matrizen gilt:

$det(AB)=det(A)det(B)$     (1)

und der Adjunktensatz (S231):

sei $R$ ein kommutativer Ring, und sei [mm] $A\in M_{nn}(R)$. [/mm] Dann gilt

[mm] $AA^{Ad}=AA^{Ad}=det(A)I_n$ [/mm]   (2)

da Körper insbesondere auch kommutative Ringe sind gilt der Adjunktensatz auch in $K$.

dann ist:

[mm] $det(A^{Ad})det(A)\stackrel{(1)}{=}det(a^{Ad}A)\stackrel{(2)}{=}det(det(A)I_n)\stackrel{Proposition4.17}{=}det(A)^n$ [/mm]

also insgesamt

[mm] $det(A^{Ad})det(A)=det(A)^n=det(A)^{n-1}det(A)$ [/mm]     (3)

An einer Aussage ändert sich doch nichts, wenn du auf beiden Seiten
mit dem gleichen Element aus $K$ erweiterst. Also erweitern wir  (3) mit dem multiplikativ Inversen von $det(A)$. Also:

[mm] $det(A^{Ad})det(A)det(A)^{-1}=det(A)^{n-1}det(A)det(A)^{-1}$ [/mm]

da $K$ ein Körper gilt doch [mm] $det(A)det(A)^{-1}=1$ [/mm] und $a*1=a [mm] \forall a\in [/mm] K$  also

[mm] $det(A^{Ad})det(A)det(A)^{-1}=\underline{det(A^{Ad})=det(A)^{n-1}}=det(A)^{n-1}det(A)det(A)^{-1}$ [/mm]

und das was unterstrichen ist war die zu zeigende Aussage.

Alles klar soweit??

MfG
Sashman

Bezug
                                
Bezug
Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Fr 24.11.2006
Autor: diego

Ok, das habe ich jetzt soweit verstanden. Vielen Dank, vor allem für die ausführlichen Erklärungen.

Ich versuche jetzt den zweiten Beweis bis morgen oder zumindest einen Ansatz...
Der Trick ist wahrscheinlich nur geeignet umzuformen und einzusetzen.
Hoffe ich kann morgen ergebnisse präsentieren.

Gruß Yvonne

Bezug
                
Bezug
Beweisführung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 25.11.2006
Autor: diego

Hallo, so habe mir zur zweiten Fragen folgendes überlegt:

[mm] det(A)^{n-2} [/mm] A = [mm] det(A)^{n-1}det(A)^{-1}A [/mm]
Ist mit  der ersten aufgabe
[mm] det(A^{Ad})detA^{-1}A [/mm]

Jetzt weiß ich nur nicht mehr weiter...
Versuche die ganze Zeit noch diese gleichung einzubringen [mm] A^{-1}=det(a)^{-1}A^{Ad} [/mm] Da die Matrix invertierbar ist müsste das ja möglich sein, aber wie???

Ist der Ansatz ansonsten ok oder ist es die komplett falsche richtung??
Bitte um einen kleinen tip - ich will versuchen mal selber drauf zu kommen...




Bezug
                        
Bezug
Beweisführung: das zweite Licht
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 25.11.2006
Autor: Sashman

Moin Yvonne!

Nach Korollar 4.3.1 (S235) gilt:

Sei $R$ ein kommutativer Ring, und sei [mm] $A\in M_{nn}(R)$. [/mm] Wenn $det(A)$ in $R$ invertierbar ist, dann ist $A$ invertierbar, und es ist [mm] $A^{-1}=det(A)^{-1}A^{Ad}$. [/mm]

Folgerungen aus dem Korollar

$A$ ist invertierbar [mm] $\Rightarrow A^{-1}=det(A)^{-1}A^{Ad}\gdw A^{Ad}=det(A)A^{-1}$ [/mm]   (1)

aus 1) wissen wir [mm] $det(A^{Ad})=det(A)^{n-1}$ [/mm] und da $det(A)$ invertierbar ist ist auch [mm] $det(A^{Ad})$ [/mm] invertierbar

(oder anders ausgrdrückt [mm] $det(A)\not= 0\to det(A)^{n-1}\not= 0\to det(A^{Ad})\not= [/mm] 0$ und da $K$ ein Körper ist [mm] $\to det(A^{Ad})$ [/mm] invertierbar)

d.h. wir können das Korollar auch auf [mm] $B=A^{Ad}$ [/mm] anwenden

[mm] $B^{-1}=det(B)^{-1}B^{Ad}\gdw B^{Ad}=det(B)B^{-1}$ [/mm]   (2)

[mm] $(A^{Ad})^{Ad}=B^{Ad}\stackrel{(2)}{=}det(B)(B)^{-1}$ [/mm]

           [mm] $=det(A^{Ad})(A^{Ad})^{-1}$ [/mm]  mit Aufgabe 1

           [mm] $=\cdots$ [/mm]

           [mm] $\stackrel{(1)}{=}\cdots$ [/mm]

           [mm] $=\cdots$ [/mm]

           [mm] $=det(A)^{n-2}A$ [/mm]

                                                         qed.


MfG
Sashman

PS wir können ja morgen ab 1500 über 4.7 reden wenn du sie nicht schon hast

nochmaliger Gruß
Sashman



Bezug
        
Bezug
Beweisführung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 25.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]