matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweisen einer Aussage + Rest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Beweisen einer Aussage + Rest
Beweisen einer Aussage + Rest < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen einer Aussage + Rest: Erklärung zur Lösung
Status: (Frage) beantwortet Status 
Datum: 14:18 Do 16.12.2004
Autor: DaMazen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Moin,

folgendes Problem, leider habe ich nicht die spur eines beweises für diese aufgabe gefunden:

Aufgabe: Das Quadrat einer ungeraden Zahl lässt bei Division durch 8 den Rest 1

dachte mir (2n+1)²=8x+1

wobei x,n  Element aus N sein müssen..


Doch leider komme ich da nicht zu einem zufriedenstellenden beweis...

sind zwar noch andere teilaufgaben danach, denke die schaffe ich aber alleine, wenn mir einer bei dieser helfen könnte.

thx gruß

        
Bezug
Beweisen einer Aussage + Rest: ich glaub', ich hab's :-)
Status: (Antwort) fertig Status 
Datum: 15:34 Do 16.12.2004
Autor: Bastiane

Hallo!
Ha, ich glaube, ich habe deine Aufgabe gelöst, obwohl ich mir nicht 100%ig sicher bin, ob das als Beweis reicht, aber eigentlich schon.

> dachte mir (2n+1)²=8x+1

Ich denke, das ist schon mal richtig!
Das formst du nun ein bisschen um:
[mm] \gdw [/mm]
[mm] 4n^2 [/mm] +4n+1=8x+1
[mm] \gdw [/mm]
[mm] 4n^2+4n=8x [/mm]
[mm] \gdw [/mm]
[mm] n^2+n=2x [/mm]
[mm] \gdw [/mm]
n(n+1)=2x

(Ich hoffe, ich habe mich nicht verrechnet!?)
Nun musst du argumentieren:
Wenn n eine gerade Zahl ist, dann ist (n+1) eine ungerade Zahl, wenn n ungerade ist, ist (n+1) gerade - du hast also auf jeden Fall das Produkt einer geraden und einer ungeraden Zahl, und solch ein Produkt ergibt immer eine gerade Zahl (musst du das auch noch beweisen? ich schätze, das müsste über Induktion gehen...). Und 2x ist definitiv eine gerade Zahl, egal, ob x gerade oder ungerade ist.

Hilft dir das?

Viele Grüße
Bastiane
[banane]

Bezug
                
Bezug
Beweisen einer Aussage + Rest: Weg => Beweis ;-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Do 16.12.2004
Autor: Marcel

Liebe Bastiane,

> Hallo!
>  Ha, ich glaube, ich habe deine Aufgabe gelöst, obwohl ich
> mir nicht 100%ig sicher bin, ob das als Beweis reicht, aber
> eigentlich schon.
>  
> > dachte mir (2n+1)²=8x+1
>  
> Ich denke, das ist schon mal richtig!
>  Das formst du nun ein bisschen um:
>  [mm]\gdw [/mm]
>  [mm]4n^2[/mm] +4n+1=8x+1
>  [mm]\gdw [/mm]
>  [mm]4n^2+4n=8x [/mm]
>  [mm]\gdw [/mm]
>  [mm]n^2+n=2x [/mm]
>  [mm]\gdw [/mm]
>  n(n+1)=2x

Genau das ist der Weg . Und so schreibt man seine Lösung auf:
Sei $k [mm] \in \IN$ [/mm] eine ungerade Zahl. Dann existiert genau eine Darstellung der Form $k=2n+1$ mit einem $n [mm] \in \IN_{\,0}=\IN \cup \{0\}$. [/mm] Wir definieren [mm] $x:=\frac{n*(n+1)}{2}$. [/mm] Dann ist (weil entweder $n$ oder $n+1$ eine gerade Zahl ist und das Produkt zweier Zahlen aus [mm] $\IN_{\,0}$ [/mm] wieder eine Zahl aus [mm] $\IN_{\,0}$ [/mm] ist) damit $x [mm] \in \IN_{\,0}$ [/mm] und es gilt:
[m]x=\frac{n*(n+1)}{2}[/m]
[mm] $\gdw$ [/mm]
$n(n+1)=2x$
[mm] $\gdw$ [/mm]
$n²+n=2x$
[mm] $\gdw$ [/mm]
$4n²+4n=8x$
[mm] $\gdw$ [/mm]
$4n²+4n+1=8x+1$
[mm] $\gdw$ [/mm]
[mm] $(\underbrace{ \; 2n+1 \;}_{=k}\,)²=8x+1$ [/mm]
[mm] $\gdw$ [/mm]
$k²=8x+1$ [mm] $(\star)$ [/mm]

(Wobei man für den Beweis jedes [mm] $\gdw$ [/mm] durch ein [mm] $\Rightarrow$ [/mm] ersetzen könnte, da dies für den Beweis genügt.)

Da $k$ eine beliebige ungerade natürliche Zahl war, folgt aus [mm] $(\star)$ [/mm] die Behauptung (beachte: [m]x \in \IN_{\,0}[/m]).

Viele Grüße,
Marcel

Bezug
                
Bezug
Beweisen einer Aussage + Rest: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 16.12.2004
Autor: DaMazen

Das hört sich gut an! Dann werde ich jetzt mal die restlichen aufgaben alleine weiter versuchen! vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]