matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBeweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Beweisen
Beweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen: Ring
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 30.10.2012
Autor: oneup2

Aufgabe
Beweisen Sie: In einem Ring gilt stets

(-a) * (-b) = a * b

Liebe Community,

leider weiß ich nicht wie ich vorgehen soll und wäre über jede Hilfe dankbar.

liebe grüße.

Bemerk: * soll nicht mal darstellen, sondern eine Verknüpfung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Di 30.10.2012
Autor: Marcel

Hallo,

> Beweisen Sie: In einem Ring gilt stets
>  
> (-a) * (-b) = a * b
>  Liebe Community,
>  
> leider weiß ich nicht wie ich vorgehen soll und wäre
> über jede Hilfe dankbar.

weil [mm] $0*a=(0+0)*a=0*a+0*a\,$ [/mm] gilt (auch gilt [mm] $a*0=a*(0+0)=a*0+a*0\,$) [/mm]
- man rechnet hier eigentlich genauso wie mit "Plus und Mal", auch, wenn
die Verknüpfungen ein "abstrakteres Symbol" haben - mach' Dir das klar,
denn das vorgerechnete folgt aus den Regeln in einem Ring! -
gilt für alle $a [mm] \in [/mm] R$ dann [mm] $0*a=0\,$ [/mm] (und auch [mm] $a*0=0\,$), [/mm] wobei
[mm] $0\,$ [/mm] das "additiv neutrale Element" ist - denn [mm] ($R,\,+$) [/mm] ist ja eine
(abelsche) Gruppe und hat solch' ein Element [mm] $0\,$ [/mm] inne.

Es folgt für alle [mm] $a,\tilde{b} \in [/mm] R$
[mm] $$0=0*\tilde{b}=(a+(-a))*\tilde{b}=a*\tilde{b}+(-a)*\tilde{b}\,$$ [/mm]
und damit [mm] $-(a*\tilde{b})=(-a)*\tilde{b}\,.$ [/mm]

Somit gilt für alle $a,b [mm] \in [/mm] R$ (benutze obiges mit [mm] $\tilde{b}=-b$) [/mm]
[mm] $$(-a)*(-b)-a*b=(-a)*(-b)+(-(a*b))=(-a)*(-b)+((-a)*b)=...\,$$ [/mm]

Rechne halt zu Ende und folgere dann die Behauptung.

Gruß,
  Marcel

Bezug
                
Bezug
Beweisen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Di 30.10.2012
Autor: oneup2

Du hast mir wirklich ziemlich weitergeholfen. Mir ist auch alles schlüssig.
Vielen Dank!

Bezug
                        
Bezug
Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:54 Di 30.10.2012
Autor: Marcel

Hallo,

> Du hast mir wirklich ziemlich weitergeholfen. Mir ist auch
> alles schlüssig.

ich habe auch nochmal ein bisschen "spicken" müssen:
Falls Du mal in die Bib gehst: "Algebra - von Meyberg, Karpfinger" hilft bei
sowas ziemlich gut. In Bosch's Algebra fand' ich da keine
Beweishinweise/Ideen, die für Deine Aufgabe gepasst hätten.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]