matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesBeweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Beweisen
Beweisen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen: Idee
Status: (Frage) beantwortet Status 
Datum: 11:26 Do 17.11.2011
Autor: Madila

Aufgabe
Seien f(x) und g(x) zwei gerade Funktionen und sei [mm] \alpha [/mm] eine beliebige reele Zahl [mm] \Rightarrow [/mm] f [mm] \pm [/mm] g, f*g, [mm] \alpha [/mm] *g.

Hallo :)

Wir sollen die Aufgabenstellung beweisen, nur habe ich noch nie bewiesen und weiß nicht so ganz genau, wie ich das beweisen soll.

Ich habe mir bisher folgendes überlegt: Damit eine Funktion gerade ist muss folgendes gelten: f(-x)=f(x)

Aber wie kann ich das oben denn nun beweisen? Soll ich das einfach versuchen mit irgendeiner allgemeinen Funktion zu berechnen? Aber welche eignet sich dafür?

Könnt ihr mir vielleicht ein paar Tipps geben?

Danke im vorraus:)

        
Bezug
Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 17.11.2011
Autor: Diophant

Hallo Madila,

eine Aufgabenstellung hast du nicht mitgeteilt. Meine Kristallkugel sagt mir aber, dass du zeigen sollst, dass für f und g gerade die Funktionen

- [mm] f\pm{g} [/mm]
- f*g
- [mm] \alpha*f [/mm]

ebenfalls gerade sind. :-)

Nutze einfach die Symmetrieeigenschaft von f und g, die ja vorausgesetzt ist. Ich zeige es dir für den letzten Fall:

[mm] h(x)=\alpha*f(x), [/mm]

[mm] h(-x)=\alpha*f(-x) [/mm]
[mm] =\alpha*f(x) [/mm] [da f gerade ist!]
=h(x) [also ist h gerade]

Sinngemaäß lassen sich die anderen Symmetrien genauso einfach zeigen.

Gruß, Diophant

Bezug
                
Bezug
Beweisen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:50 Do 17.11.2011
Autor: Madila

Vielen Dank für die Antwort, deine Kristallkugel lag richtig:)

Manchmal sollte man  nicht so kompliziert denken:P

Ich hab zu einer anderen Aufgabe noch eine Frage:

Wenn [mm] f(x)=x^{4}-2x^{3}+\bruch{x}{2} [/mm]

Betrachtet man diese Funktion, so habe ich aus den Mathelk in Erinnerung, dass diese Funktion weder punkt- noch achsensymmetrisch ist, da sowohl gerade, als auch ungerade Exponenten vorhanden sind.
Betrachte ich nun aber:
[mm] f(-x)=-x^{4}-2*-x^{3}+\bruch{-x}{2}=-x^{4}+2x^{3}-\bruch{x}{2} [/mm]
und
[mm] -f(x)=-[x^{4}-2x^{3}+\bruch{x}{2}]=-x^{4}+2x^{3}-\bruch{x}{2} [/mm]

Demnach wäre f(-x)=-f(x) somit eine ungerade Funktion, allerdings ist der Funktionsgraph nicht punktsymmetrisch...

Kann mir vielleich jemand sagen, wo mein Denkfehler ist?
Danke und lieben Gruß

Bezug
                        
Bezug
Beweisen: Klammern setzen
Status: (Antwort) fertig Status 
Datum: 11:56 Do 17.11.2011
Autor: Roadrunner

Hallo Madila!


Dein Denkfehler liegt in den vernachlässigten Klammern. Es gilt:

$f(-x) \ = \ [mm] \red{(}-x\red{)}^4-2*\red{(}-x\red{)}^3+\bruch{\red{(}-x\red{)}}{2} [/mm] \ = \ [mm] \red{+} [/mm] \ [mm] x^4-2*\left(-x^3\right)-\bruch{x}{2} [/mm] \ = \ [mm] x^4 [/mm] \ [mm] \red{+} [/mm] \ [mm] 2*x^3-\bruch{x}{2} [/mm] \ [mm] \red{\not= \ -f(x)}$ [/mm]


Gruß vom
Roadrunner

Bezug
                                
Bezug
Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Do 17.11.2011
Autor: Madila

Danke:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]