matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenBeweise bei Sprachen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Formale Sprachen" - Beweise bei Sprachen
Beweise bei Sprachen < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise bei Sprachen: Aufgabe und Vorschläge
Status: (Frage) überfällig Status 
Datum: 01:06 Sa 28.01.2012
Autor: hilado

Aufgabe
Im Folgenden seien L, [mm] L_1, L_2, L_3 [/mm] Sprachen über demselben Alphabet [mm] \Sigma. [/mm] Beweisen oder widerlegen Sie die folgenden Aussagen. Benennen Sie jeweils auch das Verfahren, das Sie zum Nachweis Ihrer Behauptung verwenden.

(a) [mm] L_1 [/mm] * [mm] L_2 [/mm] = [mm] L_2 [/mm] * [mm] L_1 [/mm]

(b) [mm] (L_1 [/mm] * [mm] L_2) [/mm] * [mm] L_3 [/mm] = [mm] L_1 [/mm] * [mm] (L_2 [/mm] * [mm] L_3) [/mm]

(c) [mm] (L_1 \cap L_2) [/mm] * [mm] L_3 [/mm] = [mm] (L_1 [/mm] * [mm] L_3) \cap (L_2 [/mm] * [mm] L_3) [/mm]

(d) [mm] L_1 \subseteq L_2, [/mm] so gilt auch [mm] L_1 [/mm] * L [mm] \subseteq L_2 [/mm] * L und L * [mm] L_1 \subseteq [/mm] L * [mm] L_2. [/mm]

(e) [mm] (L_1 [/mm] * [mm] L_2)^R [/mm] = [mm] {L_2}^R [/mm] * [mm] {L_1}^R [/mm]

(f) Ist [mm] L_1 \subseteq L_2, [/mm] so gilt auch [mm] L/L_1 \subseteq L/L_2. [/mm]

(g) [mm] (L_1/L_2)*L_2 [/mm] = [mm] L_1 [/mm]

Also ich hab leider nicht alles, weil ich zu manchen einfach nicht weiß, wie ich das am besten machen. Das sind Teil (b), (c) und (f)

Zu den anderen habe ich folgendes:

(g)

Definition von L/L': Die Quotientensprache zweier Sprachen L und L' über demselben Alphabet [mm] \Sigma [/mm] ist definiert durch: L/L' := { w [mm] \in \Sigma^{\*} [/mm] : es gibt ein u [mm] \in [/mm] L' derart, dass wu [mm] \in [/mm] L }

[mm] L_1 [/mm] = {aa, bb, cc}
[mm] L_2 [/mm] = {a, b}
[mm] (L_1 [/mm] / [mm] L_2) [/mm] = {a, b}
[mm] (L_1 [/mm] / [mm] L_2) [/mm] * [mm] L_2 [/mm] = {aa, bb} [mm] \not= L_1 [/mm]

Das wäre dann ein direkter Beweis für die Widerlegung der Aussage.

(a) [mm] L_1 [/mm] * [mm] L_2 [/mm] = { ww' [mm] \in \Sigma^{\*}, [/mm] w [mm] \in L_1, [/mm] w' [mm] \in L_2 [/mm] }
[mm] L_2 [/mm] * [mm] L_1 [/mm] = { w'w [mm] \in \Sigma^{\*}, [/mm] w [mm] \in L_1, [/mm] w' [mm] \in L_2 [/mm] }

[mm] L_1 [/mm] = {aa}
[mm] L_2 [/mm] = {bb}

[mm] L_1 [/mm] * [mm] L_2 [/mm] = {aabb}
[mm] L_2 [/mm] * [mm] L_1 [/mm] = {bbaa}

Das wäre dann auch wieder ein direkter Beweis.

(b) Ich wills mal versuchen, aber ich bin mir hier überhaupt nicht sicher:
[mm] L_1 [/mm] * [mm] L_2 [/mm] = { uv [mm] \in \Sigma^{\*}, [/mm] u [mm] \in L_1, [/mm] v [mm] \in L_2 [/mm] } =: [mm] L_{12} [/mm]

[mm] L_2 [/mm] * [mm] L_3 [/mm] = { vw [mm] \in \Sigma^{\*}, [/mm] v [mm] \in L_2, [/mm] w [mm] \in L_3 [/mm] } =: [mm] L_{23} [/mm]

[mm] (L_1 [/mm] * [mm] L_2) [/mm] * [mm] L_3 [/mm] = [mm] L_{12} [/mm] * [mm] L_3 [/mm] = { uvw [mm] \in \Sigma^{\*}, [/mm] uv [mm] \in L_{12}, [/mm] w [mm] \in L_3 [/mm] }

[mm] L_1 [/mm] * [mm] (L_2 [/mm] * [mm] L_3) [/mm] = [mm] L_1 [/mm] * L_23 = { uvw [mm] \in \Sigma^{\*}, [/mm] u [mm] \in L_1, [/mm] vw [mm] \in L_{23} [/mm] }

=> [mm] L_{12} [/mm] * [mm] L_{3} [/mm] = [mm] L_1 [/mm] * [mm] L_{23} [/mm] =>
[mm] (L_1 [/mm] * [mm] L_2) [/mm] * [mm] L_3 [/mm] = [mm] L_1 [/mm] * [mm] (L_2 [/mm] * [mm] L_3) [/mm]

d) [mm] L_1 \subseteq L_2, [/mm] d.h. jedes Element von [mm] L_1 [/mm] ist auch in [mm] L_2. [/mm] Durch die Konkatenation beider Mengen mit L entstehen zwei neue Mengen:
[mm] L_1 [/mm] * L = { uw, u [mm] \in L_1, [/mm] w [mm] \in [/mm] L }
[mm] L_2 [/mm] * L = { vw, v [mm] \in L_2, [/mm] w [mm] \in [/mm] L }

Wir nehmen nun an, dass die Menge [mm] L_1 [/mm] * L nun keine Teilmenge von [mm] L_2 [/mm] * L ist. D.h. wir finden mind. ein Element in der Menge [mm] L_1 [/mm] * L, dass nicht in [mm] L_2 [/mm] * L ist. D.h. wir müssen ein Element finden, für das gilt
[mm] \exists [/mm] u in [mm] uw_1 [/mm] : [mm] \forall [/mm] v in [mm] vw_2 [/mm] : v [mm] \not= [/mm] u, [mm] w_1 [/mm] = [mm] w_2 [/mm]

Das würde bedeuten, dass es mind. ein Element in [mm] L_1 [/mm] gibt, dass nicht in [mm] L_2 [/mm] liegt, doch damit wäre [mm] L_1 [/mm] nicht mehr Teilmenge von [mm] L_2 [/mm] und das ist ein Widerspruch zur Vorraussetzung, dass [mm] L_1 \subseteq L_2. [/mm]

Der zweite Teil geht dann genauso.

(e) Def: [mm] L^R [/mm] = { [mm] w^R, [/mm] w [mm] \in [/mm] L }
w = [mm] w_1 [/mm] ... [mm] w_n [/mm]
[mm] w^R [/mm] = [mm] w_n [/mm] ... [mm] w_1 [/mm]

[mm] (L_1 [/mm] * [mm] L_2)^R [/mm] = { [mm] {(u_1u_2)}^R [/mm] : [mm] u_1 \in L_1, u_2 \in L_2 [/mm] }

[mm] u_1 [/mm] = [mm] w_1 [/mm] ... [mm] w_n [/mm]
[mm] u_2 [/mm] = [mm] v_1 [/mm] ... [mm] v_n [/mm]
[mm] {u_1}^R [/mm] = [mm] w_n [/mm] ... [mm] w_1 [/mm]
[mm] {u_2}^R [/mm] = [mm] v_n [/mm] ... [mm] v_1 [/mm]

[mm] {(u_1u_2)}^R [/mm] = [mm] v_n [/mm] ... [mm] v_1 w_n [/mm] ... [mm] w_1 [/mm] = [mm] {u_2}^R {u_1}^R [/mm]

[mm] {L_2}^R [/mm] * [mm] {L_1}^R [/mm] = { [mm] {u_2}^R {u_1}^R [/mm] : [mm] u_1 \in L_1, u_2 \in L_2 [/mm] }

=> [mm] {(L_1 * L_2)}^R [/mm] = [mm] {L_2}^R [/mm] * [mm] {L_1}^R [/mm] => Diese Aussage stimmt.

Was meint ihr zu meinen Lösungen? Sind diese auch mathematisch korrekt oder soll ich das anders machen?


        
Bezug
Beweise bei Sprachen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Mi 01.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]