matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeBeweise Teiler größer 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathematik-Wettbewerbe" - Beweise Teiler größer 1
Beweise Teiler größer 1 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise Teiler größer 1: Frage
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 03.03.2005
Autor: Andrej

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo an euch alle.

Hier eine Aufgabe aus dem Landeswettbewerb Mathematik (Aufgabe 430945):
Untersuchen Sie, ob es unendlich viele natürliche Zahlen n gibt, für die [mm] 2^{n}-3 [/mm] und [mm] 3^{n}-2 [/mm] einen gemeinsamen Teiler größer 1 haben.

Wie kann ich diese Aufgabe lösen?

Ich weiß nur dass beide Zahlen ungerade sind und damit nicht durch 2 teilbar, aber viel mehr fällt mir dazu nicht ein.

Gruß Andrej

        
Bezug
Beweise Teiler größer 1: Tipp
Status: (Antwort) fertig Status 
Datum: 21:02 Do 03.03.2005
Autor: Teletubyyy

Hi Andrej,

Wenn ich dich richtig verstanden habe, willst du keine fertige Lösung, sondern vielmehr einen Tipp oder eine Lösungsidee.

Deine ersten Gedanken mögen zwar unnütze scheinen, gehen aber in die richtige Richtung:
2 kann nie ein Teiler von [mm] 3^n-2 [/mm] oder von [mm] 2^n-3 [/mm] sein.

Probieren wir jetzt mal die Primzahlen weiter durch:

3 ist natürlich kein Teiler von [mm] 3^n-2. [/mm] Allerdings kann [mm] 2^n-3 [/mm] auch kein vielfaches von 3 sei. Da das Gegenteil sofort zu einem Wiederspruch führt: [mm] $2^n-3=3k \gdw 2^n=3(k+1)$. [/mm]

Die nächste Primzahl ist die 5. Und bei dieser ist es möglich unendlich viele n anzugeben, sodass 5 sowohl [mm] 2^n-3 [/mm] als auch [mm] 3^n-2 [/mm] teilt.
geht mit Kongruenzrechnung relativ einfach (sagt dir das irgendwas???)
Probiere jetzt mal dies selbst zu zeigen.

Wenn du weitere Tips oder Hilfestellungen brauchst (oder einfach nur die komplette Lösung wissen willst) melde dich nochmal.

Gruß Samuel

Bezug
                
Bezug
Beweise Teiler größer 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Do 03.03.2005
Autor: Andrej

Kurz bevor du das gepostet hattest ist mir die Lösung eingefallen. So ein richtiger Gedankenblitz.

[mm] 2^{n} [/mm] Mod 5 ist periodisch. Nämlich: 2,4,3,1
[mm] 3^{n} [/mm] Mod 5 ist ebenfalls periodisch. Nämlich: 3,4,2,1

[mm] 2^{n} [/mm] - 3 ist bei n=3+4x durch 5 teilbar.
[mm] 3^{n} [/mm] - 2 ist ebenfalls bei n=3+4x durch 5 teilbar.
-> es gibt unendlich viele n.

Der Beweis ist zwar nicht sonderlich schön, aber ich denke es kommt rüber was gemeint ist.
Trotz allem danke für die Antwort

Bezug
                        
Bezug
Beweise Teiler größer 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Do 03.03.2005
Autor: Teletubyyy

Hi Andrej,

schön gemacht!

Genau so hab ich mir das auch überlegt. Für [mm]n=4k+3 \Rightarrow 5|(2^n-3)\,\,und\,\,5|(3^n-2)[/mm]

Nur dass ich den Beweis eigentlich ganz elegant finde ;-)


Gruß Samuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]