matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBeweise Supremum und Infimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Beweise Supremum und Infimum
Beweise Supremum und Infimum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise Supremum und Infimum: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:07 Mo 01.11.2010
Autor: eLi

Aufgabe 1
Sei A [mm] \subseteq \IR; [/mm] A [mm] \not= \emptyset [/mm] mit inf A > 0. Zeige, dass [mm] B:=\{ x^{-1} | x \in A \} [/mm] nach oben beschränkt ist und das gilt
sup B = [mm] \bruch{1}{inf A}. [/mm]

Aufgabe 2
Seien A, B [mm] \subseteq \IR [/mm] nichleere Mengen derart, dass gilt a<b mit [mm] a\in [/mm] A und [mm] b\in [/mm] B. Zeige: sup A [mm] \le [/mm] inf B. Finde ein Beispiel mit sup A = inf B.

Hallo,

also nachvollziehbar sind beide Aufgaben, ich weiß leider nur nich wie ich das beweisen soll. Zu Aufgabe 1.) könnte man argumentieren: Da x [mm] \in [/mm] A ist, ist inf A das kleinstmögliche x und somit wäre sup B = [mm] \bruch{1}{inf A}. [/mm] Aber ich kann mir nicht vorstellen, dass das reicht. Kann mir da vllt jemand sagen, wie man das Mathematisch korrekt beweisen kann?

Bei der 2.) Aufgabe habe ich überhaupt keine Idee.

Danke schonmal für eure Hilfe.



        
Bezug
Beweise Supremum und Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Di 02.11.2010
Autor: rainerS

Hallo!

> Sei A [mm]\subseteq \IR;[/mm] A [mm]\not= \emptyset[/mm] mit inf A > 0.
> Zeige, dass [mm]B:=\{ x^{-1} | x \in A \}[/mm] nach oben beschränkt
> ist und das gilt
>  sup B = [mm]\bruch{1}{inf A}.[/mm]
>  Seien A, B [mm]\subseteq \IR[/mm]
> nichleere Mengen derart, dass gilt a<b mit [mm]a\in[/mm] A und [mm]b\in[/mm]
> B. Zeige: sup A [mm]\le[/mm] inf B. Finde ein Beispiel mit sup A =
> inf B.
>  Hallo,
>  
> also nachvollziehbar sind beide Aufgaben, ich weiß leider
> nur nich wie ich das beweisen soll. Zu Aufgabe 1.) könnte
> man argumentieren: Da [mm]x \in A[/mm] ist, ist inf A das
> kleinstmögliche x und somit wäre sup B = [mm]\bruch{1}{inf A}.[/mm]

Das ist nicht richtig. Du verwechselst Infimum mit Minimum. Für das Minimum wäre es in der Tat so, wie du schreibst.

Das Infimum ist die größte Zahl z, die die Bedingung

[mm] z\le x [/mm] für alle [mm] $x\in [/mm] A$

erfüllt.

> Aber ich kann mir nicht vorstellen, dass das reicht. Kann
> mir da vllt jemand sagen, wie man das Mathematisch korrekt
> beweisen kann?

Zunächst einmal: [mm] $\inf [/mm] A$ ist eine untere Schranke von A. Kannst du daraus ableiten, dass [mm]\bruch{1}{\inf A}[/mm] eine obere Schranke von B ist?

Das wäre schon die halbe Miete, denn dann musst du nur noch zeigen, dass es sich um die kleinste obere Schranke von B handelt.

>  
> Bei der 2.) Aufgabe habe ich überhaupt keine Idee.

Schreibe dir erst einmal die Definition von [mm] $\sup [/mm] A$ und [mm] $\inf [/mm] B$ hin !

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]