matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeweise Aussagen ggT
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Beweise Aussagen ggT
Beweise Aussagen ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise Aussagen ggT: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 30.11.2011
Autor: Catman

Aufgabe
Beweisen Sie für a,b,c,x,y,ai [mm] \inZ [/mm] mit i=1,...,n (n [mm] \in [/mm] N) und nicht alle ai = 0 und c ungleich 0.

a) ax+by=1 -> x,y teilerfremd
b) ggT (a,b) = ax + by --> ggT(x,y) = 1
c) ggT(c*a1,...,c*an) = |c| * ggT(a1,...an)


Aufgabe a hab ich bewiesen indem ich angenommen habe es gäbe ein t>1, dass x und y teilen würde, dann würde auch t*(a*q1+b*q2)=1 gelten und da t>1 geht das nicht. Also müssen x und y teilerfremd sein.

Bei Aufgabe b komme ich nicht weiter, wäre für einen Ansatz sehr dankbar.

Bei Aufgabe c habe ich gedacht zu zeigen, dass d<=|c|*d2 ist und |c|d2<= d

Also d ist ggT(c*...) und d2 ist ggT(a1..)

Und das d>= |c| *d ist scheint mir logisch, weil es ja egal ist ob ich das c vorher oder nachher mit dem a multipliziere, bzw. genauso müsste es andersrum sein, aber ich hab keine Idee wie ich das mathematisch aufschreibe, bzw. beweise....

        
Bezug
Beweise Aussagen ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Do 01.12.2011
Autor: felixf

Moin!

> Beweisen Sie für a,b,c,x,y,ai [mm]\inZ[/mm] mit i=1,...,n (n [mm]\in[/mm] N)
> und nicht alle ai = 0 und c ungleich 0.
>  
> a) ax+by=1 -> x,y teilerfremd
>  b) ggT (a,b) = ax + by --> ggT(x,y) = 1

>  c) ggT(c*a1,...,c*an) = |c| * ggT(a1,...an)
>  
> Aufgabe a hab ich bewiesen indem ich angenommen habe es
> gäbe ein t>1, dass x und y teilen würde, dann würde auch
> t*(a*q1+b*q2)=1 gelten und da t>1 geht das nicht. Also
> müssen x und y teilerfremd sein.

[ok]

> Bei Aufgabe b komme ich nicht weiter, wäre für einen
> Ansatz sehr dankbar.

Nun, $ggT(a, b)$ ist ein Teiler sowohl von $a$ wie auch von $b$. Teile die ganze Gleichung durch $ggT(a, b)$ und benutze a).

> Bei Aufgabe c habe ich gedacht zu zeigen, dass d<=|c|*d2
> ist und |c|d2<= d
>
> Also d ist ggT(c*...) und d2 ist ggT(a1..)
>
> Und das d>= |c| *d ist scheint mir logisch, weil es ja egal
> ist ob ich das c vorher oder nachher mit dem a
> multipliziere, bzw. genauso müsste es andersrum sein, aber
> ich hab keine Idee wie ich das mathematisch aufschreibe,
> bzw. beweise....

Geh doch wie folgt vor: ist [mm] $d_2$ [/mm] ein ggT von [mm] $a_1, \dots, a_n$, [/mm] so gilt $d [mm] \mid a_i$, [/mm] und somit auch $|c| [mm] d_2 \mid [/mm] c [mm] a_i$ [/mm] fuer alle $i$. Da $d$ ein ggT von $c [mm] a_1, \dots, [/mm] c [mm] a_n$ [/mm] ist und $|c| [mm] d_2$ [/mm] ebenfalls ein Teiler von $c [mm] a_1, \dots, [/mm] c [mm] a_n$ [/mm] ist, folgt ...

Fuer die andere Richtung argumentiere zuerst, dass $c$ ein Teiler von $d$ sein muss. Dann folgt, dass [mm] $\frac{d}{|c|}$ [/mm] ein gemeinsamer Teiler von [mm] $a_1, \dots, a_n$ [/mm] ist, womit eine Beziehung zwischen [mm] $\frac{d}{|c|}$ [/mm] und [mm] $d_2 [/mm] = [mm] ggT(a_1, \dots, a_n)$ [/mm] folgt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]