matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweisaufgabe abg./komp. Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Beweisaufgabe abg./komp. Menge
Beweisaufgabe abg./komp. Menge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisaufgabe abg./komp. Menge: Tipp oder Idee
Status: (Frage) beantwortet Status 
Datum: 15:39 Do 20.04.2006
Autor: cauchyy

Aufgabe
Beweise oder Widerlege durch Gegenbeispiel: Ist A eine abgeschlossene und B eine kompakte Menge in  [mm] \IR^n [/mm] (n  [mm] \in \IN), [/mm] dann ist die Menge A+B := {a+b | a  [mm] \in [/mm] A, b  [mm] \in [/mm] B} abgeschlossen.

Bitte um Hilfe. Kann die Aufgabe irgendwie nicht. Bin dankbar für einige Tipps. Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisaufgabe abg./komp. Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Do 20.04.2006
Autor: MatthiasKr

Hallo,

wie wäre es, wenn Du uns deine bisherigen Ansätze/Ideen (auch wenn noch so klein) mitteilen würdest?

VG
Matthias

Bezug
                
Bezug
Beweisaufgabe abg./komp. Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Fr 21.04.2006
Autor: cauchyy

hallo,
also folgendes habe ich mir überlegt: da A abg., und B kompakt, also beschränkt und abgeschlossen stimmt die Aussage A+B abg. , weil abg. + abg. = abg. oder? aber wie beweise ich das? mitmit irgendwelchen ofenen umgebungen?

Bezug
        
Bezug
Beweisaufgabe abg./komp. Menge: Tip
Status: (Antwort) fertig Status 
Datum: 14:02 Fr 21.04.2006
Autor: MatthiasKr

Hallo,

von mir zwei Tips:

- ich würde es mit einer 'direkten' definition von abgeschlossenheit versuchen: hat eine Folge von Gliedern aus der Menge einen Grenzwert, so liegt der Grenzwert wieder in der menge.

- deine hypothese ist falsch: abgeschlossen + abgeschlossen muß nicht abgeschlossen sein. du brauchst unbedingt die kompaktheit (sprich beschränktheit) einer der mengen.

Definiere also $C:=A+B$ und betrachte eine konvergente folge [mm] $c_n$ [/mm] aus $C$. Du mußt zeigen, dass der grenzwert $c$ wieder in $C$ liegt.

VG
Matthias

Bezug
        
Bezug
Beweisaufgabe abg./komp. Menge: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:53 Mi 26.04.2006
Autor: cauchyy

Verstehe immernoch nicht ganz, was ich machen soll. Könnt Ihr mir noch paar Tipps dafür geben. Danke

Bezug
        
Bezug
Beweisaufgabe abg./komp. Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Mi 26.04.2006
Autor: cauchyy

Ok, hat sich doch erledigt. Danke für deine Hilfe, Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]