matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweis zu einem Satz von Paul
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Beweis zu einem Satz von Paul
Beweis zu einem Satz von Paul < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu einem Satz von Paul: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:41 Di 08.10.2013
Autor: KeineAhnung73

Aufgabe
Satz von Paul Erdös und einen Beweis dazu siehe Datei-Anhang [a]Datei-Anhang

Meine Fragen
1. Wie kann ich ohne über die Eigenwerte zu argumentieren direkt mit der Def. zeigen, dass die 2. Matrix pos. semidefinit ist? (Kann manm das berechnen?)
2. Wie kann man zeigen, dass aus  [mm] BB^T [/mm] positiv definit, folgt [mm] BB^T [/mm] ist invertierbar?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: docx) [nicht öffentlich]
        
Bezug
Beweis zu einem Satz von Paul: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 08.10.2013
Autor: wieschoo

Ist [mm]C:=BB^T[/mm] eine symmetrische positive Matrix, so solltest du dir mal anschauen, was für die Eigenwerte von [mm]C[/mm] in Frage kommen kann.

Was ist bei dir die
> 2. Matrix
??
​Da ist nur eine Matrix.
Oder meinst du
[mm] $A=\pmat{1&1&\cdots&1\\\vdots& \vdots &&\vdots\\1&1&\cdots&1}$ [/mm]
Es steht eigentlich alles im Dokument drin. Selbst die Antwort zu meinem Ersten Satz. Du brauchst
[mm] $A\text{ positiv definit}:\Leftrightarrow\quad x^TAx>0\forall x\neq 0\quad \iff \quad\text{Eigenwerte}(A)>0\quad\implies \quad [/mm] A [mm] \text{ invertierbar}$ [/mm]

Bezug
                
Bezug
Beweis zu einem Satz von Paul: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Mi 09.10.2013
Autor: felixf

Moin,

> Es steht eigentlich alles im Dokument drin. Selbst die
> Antwort zu meinem Ersten Satz. Du brauchst
>  [mm]A\text{ positiv definit}:\Leftrightarrow\quad x^TAx>0\forall x\neq 0\quad \iff \quad\text{Eigenwerte}(A)>0\quad\iff \quad A \text{ invertierbar}[/mm]

das letzte ist keine Aequivalenz, sondern nur eine Implikation :) Eigenwerte koennen ja auch negativ sein.

LG Felix




Bezug
                        
Bezug
Beweis zu einem Satz von Paul: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Do 10.10.2013
Autor: wieschoo

Ups...
Das sind wohl die Nachwirkungen von den Semesterferien ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]