matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBeweis zu delta-defi. und gren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Beweis zu delta-defi. und gren
Beweis zu delta-defi. und gren < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu delta-defi. und gren: Tipp, Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 09.12.2009
Autor: LariC

Aufgabe
Sei  [mm] \limes_{x\rightarrow\ xo}f(x)=a [/mm]
Dann gilt:
Ist p e R mit a>p, dann gibt es ein [mm] \delta>0, [/mm] sodass f(x)>p für alle x mit [mm] 0

Hallo, habe diese Aufageb nun schon den halben Tag versucht und bin zu keinem Ergebnis gekommen. Irgendwie fehlt mir immer ein Ansatz zum beweisen.
Hätte vielleicht irgendjemnad eine Idee für mich?

Ich habe disese Frage auch auf chemieonline.de gestellt!

        
Bezug
Beweis zu delta-defi. und gren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mi 09.12.2009
Autor: Gonozal_IX

Hiho,

1.) Was heisst es denn (per Definition), dass [mm]\limes_{x\rightarrow\ xo}f(x)=a[/mm] ?

2.) Überlege dir, dass aus $a > p$ insbesondere folgt [mm] $\exists\varepsilon [/mm] > 0: a + [mm] \varepsilon [/mm] > p$

MFG,
Gono.

Bezug
                
Bezug
Beweis zu delta-defi. und gren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mi 09.12.2009
Autor: LariC

Erstmal vielen Dank, das du mir hilfst:
also zu 1.)
Die Definition bedeutet, dass es zu jedem [mm] \varepsilon [/mm] >0
ein [mm] \delta=\delta(\varepsilon [/mm] ) gibt, sodass [mm] If(x)-aI<\varepsilon [/mm]  gilt und zwar für alle x [mm] \in [/mm] X, [mm] 0
Also auf die Aufgabe übertargen müsste ein Epsilon bestimmt werden für diese mit [mm] a+\varepsilon [/mm]   =p gilt.
2.)
Ok, mir war klar, dass es ein [mm] a+\varepsilon [/mm]   gibt, das
p entspricht, denn a<P wäre dann dazwischen genau der Bereich den [mm] \varepsilon [/mm]  so zu sagen aufspannt, aber warum sagst du jetzt, dass es [mm] a+\varepsilon [/mm]  >p sein soll?
Liegen etwa die Eckpunkte des Intervalls nicht mehr mit [mm] im\delta-Bereich?! [/mm]


Bezug
                        
Bezug
Beweis zu delta-defi. und gren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Mi 09.12.2009
Autor: Gonozal_IX

Huch,

ich meinte natürlich [mm] $a-\varepsilon [/mm] > p$

Zu diesem [mm] \varepsilon [/mm] gibt es nun ein [mm] \delta [/mm] und was gilt für dieses [mm] \delta [/mm] dann?

MFG,
Gono.

Bezug
                                
Bezug
Beweis zu delta-defi. und gren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 09.12.2009
Autor: LariC

Gut - dann macht es auch schon mehr Sinn [mm] a-\varepsilon>p [/mm] müssste ja immer existiren.
So jetzt zu dem [mm] \delta: [/mm]

Also:
jetzt mal ohne Rechnung - geht schneller, ergäbe sich dann:

[mm] \delta
Richtig so?

Bezug
                                        
Bezug
Beweis zu delta-defi. und gren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Do 10.12.2009
Autor: Gonozal_IX

Hiho,

nein, du wählst dir ein [mm] \varepsilon [/mm] gerade.

[mm]\varepsilon

Dann weisst du aus $ [mm] \limes_{x\rightarrow\ xo}f(x)=a [/mm] $ was?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]