matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis zu Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Beweis zu Körper
Beweis zu Körper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Mo 31.10.2005
Autor: Brutaaaal

Hallo Leute!

Ich habe zwei Übungsaufgaben, bei denen ich absolut keinen Plan habe. In beiden Aufgaben soll ich beweisen, dass folgende Sachen Körper sind:

1)   [mm] \IQ(\wurzel{7}) [/mm] := { [mm] a+b\wurzel{7} [/mm] | a,b [mm] \in \IQ [/mm] } [mm] \subset \IR [/mm]
      Ich soll zeigen, dass [mm] \IQ(\wurzel{7}) [/mm] mit der in [mm] \IR [/mm] definierten Addition
      und Multiplikation einen Körper bildet und ich soll [mm] (1+\wurzel{7})^{-1} [/mm]
      bestimmen.

2)  Betrachte die Menge [mm] \IZ/3\IZ [/mm] := { 0,1,2 } zusammen mit den
     Verknüpfungen + und * (Ich denke die Tabellen haben irgenetwas mit
     modulo 3 zutun, da bei 2+1 als Ergebnis 0 herauskommt und bei 2*2
     kommt 1 heraus, laut den beiden Tabellen). Hier soll ich zeigen,
     dass [mm] \IZ/3\IZ [/mm] ein Körper ist.

Ich hoffe mir kann jemand weiterhelfen, da ich, wie gesagt nicht den Hauch einer Ahnung habe.

Ich habe diese Aufgaben auch in kein anderes Forum gestellt.

        
Bezug
Beweis zu Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Mo 31.10.2005
Autor: Britta82

Guten Morgen,

> Hallo Leute!
>  
> Ich habe zwei Übungsaufgaben, bei denen ich absolut keinen
> Plan habe. In beiden Aufgaben soll ich beweisen, dass
> folgende Sachen Körper sind:
>  
> 1)   [mm]\IQ(\wurzel{7})[/mm] := ([mm]a+b\wurzel{7}[/mm] |a,b [mm]\in \IQ[/mm])
> [mm]\subset \IR[/mm]
>        Ich soll zeigen, dass [mm]\IQ(\wurzel{7})[/mm]
> mit der in [mm]\IR[/mm] definierten Addition
> und Multiplikation einen Körper bildet und ich soll
> [mm](1+\wurzel{7})^{-1}[/mm]
> bestimmen.

Also, zuerste die Körpereigenschaften,

1)(K,+) abelsche Gruppe,
2) (K \ {0},*)abelsche Gruppe und
3) Distributivgesetze,
zu 1) Nimm 3 Elemente [mm] (a+b\wurzel{7}), (c+d\wurzel{7}), (e+f\wurzel{7}). [/mm]

Jetzt addieren wir [ [mm] (a+b\wurzel{7})+ (c+d\wurzel{7})]+(e+f\wurzel{7})=[a+b\wurzel{7}+ c+d\wurzel{7}]+e+f\wurzel{7} [/mm] = [mm] a+b\wurzel{7}+ c+d\wurzel{7}+e+f\wurzel{7} [/mm] = [mm] a+b\wurzel{7}+ [c+d\wurzel{7}+e+f\wurzel{7}]=(a+b\wurzel{7})+[(c+d\wurzel{7})+(e+f\wurzel{7})] [/mm]

Dann zeigen wir [mm] (a+b\wurzel{7})+ (c+d\wurzel{7}) [/mm] = [mm] a+b\wurzel{7}+c+d\wurzel{7} [/mm] =(Kommutativität im [mm] \IR) c+d\wurzel{7}+a+b\wurzel{7} [/mm] = [mm] (c+d\wurzel{7})+(a+b\wurzel{7}) [/mm]

Das Inverse probier doch am besten selbst mit [mm] (-a-b\wurzel{7}) [/mm]

Zur Multiplikation kannst du das genauso machen, versuchs doch erst mal selbst, ist gar nicht so schwer.


>  
> 2)  Betrachte die Menge [mm]\IZ/3\IZ[/mm] := { 0,1,2 } zusammen mit
> den
> Verknüpfungen + und * (Ich denke die Tabellen haben
> irgenetwas mit
> modulo 3 zutun, da bei 2+1 als Ergebnis 0 herauskommt und
> bei 2*2
> kommt 1 heraus, laut den beiden Tabellen). Hier soll ich
> zeigen,
> dass [mm]\IZ/3\IZ[/mm] ein Körper ist.

Hier mußt du auch einfach nachrechnen, ihr habt ja sicher die Addition und Multiplikation definiert.
Ansonsten guck dir []Restklasssenring an, dein Gebilde ist sogar ein Körper, da 3 eine Primzahl ist

>  
> Ich hoffe mir kann jemand weiterhelfen, da ich, wie gesagt
> nicht den Hauch einer Ahnung habe.
>  
> Ich habe diese Aufgaben auch in kein anderes Forum
> gestellt.

LG

Britta


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]