matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis zu Irrationalenzahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Beweis zu Irrationalenzahlen
Beweis zu Irrationalenzahlen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Irrationalenzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 09.10.2008
Autor: Imbecile

Aufgabe 1
Zeige: Ist r rational und s irrational, so ist r+s irrational und für [mm] r\not= [/mm] 0 auch rs irrational

Aufgabe 2
Zeige: Sind a,b,c,d rational, [mm] ad-bc\not= [/mm] 0, s irrational, [mm] cs+d\not= [/mm] 0, so ist auch [mm] \bruch{as+b}{cs+d} [/mm] irrational

Aufgabe 3
Zeige: Zwischen je zwei rationalen Zahlen liegt stets eine Irrationalezahl.

Hallo

Diese 3 Beispiele befinden sich unter anderem auf meinem neuen Übungszettel.
Mein Problem ist jetzt, ich weiß einfach nicht wo ich wie ansetzten sollte!
Beweise sind leider meine große Schwachstelle.
Nein ich will keine vollständige Lösung! Nur ein ansatz oder eine Idee die mir hilft einen Ansatz zu finden wäre recht nett!

Auf jeden Fall Danke!
Lg,
Conny

        
Bezug
Beweis zu Irrationalenzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Do 09.10.2008
Autor: leduart

Hallo
1. Aufgabe : Widerspruchsbeweis:
angenommen r+s ist rational also ... jetz die bedingung fuer rational hinschreiben. dann muss rauskommen s auch ratinal!
aehnlich  2. aufgabe.
3. Wieder nimm an es liegen nur rationale dazwischen, und konstruier ne irrationale. ueberlegs erstmal an nemm konkreten Beispiel wie 0,1 und 0,100000001
zwischen den meisten Zahlen liegt schon mal ihr meist irrationales geometrisches Mittel.
Gruss leduart

Bezug
                
Bezug
Beweis zu Irrationalenzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Mo 13.10.2008
Autor: Imbecile

Danke für die Hilfe!
Mit deinem Tipp habe ich es schlussendlich geschafft!
Lg,
Conny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]