matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis von natürlichen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Beweis von natürlichen Zahlen
Beweis von natürlichen Zahlen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von natürlichen Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:41 So 15.11.2009
Autor: Juliia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Beweisen Sie:
1) [mm] \vektor{n \\ k}\le \vektor{n \\Gausklammer n/2 }. [/mm]
Dabei sie Gausklammer n/2 die größte natürliche Zahl m mit [mm] m\le [/mm] n/2, also n/2 abgerundet.
2)Für alle n [mm] \in \IN [/mm] gilt: [mm] \summe_{k=0}^{n}\vektor{n \\ k}=2^{n} [/mm]
3)Für alle n [mm] \in \IN [/mm] gilt: [mm] \summe_{k=0}^{n} (-1)^{^k}\vektor{n \\ k} [/mm] = 0
Weiss nicht, womit ich anfangen soll.!

        
Bezug
Beweis von natürlichen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 So 15.11.2009
Autor: steppenhahn

Hallo!

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Beweisen Sie:
> 1) [mm]\vektor{n \\ k}\le \vektor{n \\Gausklammer n/2 }.[/mm]
>  
> Dabei sie Gausklammer n/2 die größte natürliche Zahl m
> mit [mm]m\le[/mm] n/2, also n/2 abgerundet.
>  2)Für alle n [mm]\in \IN[/mm] gilt: [mm]\summe_{k=0}^{n}\vektor{n \\ k}=2^{n}[/mm]
>  
> 3)Für alle n [mm]\in \IN[/mm] gilt: [mm]\summe_{k=0}^{n} (-1)^{^k}\vektor{n \\ k}[/mm]
> = 0
>  Weiss nicht, womit ich anfangen soll.!

Probier' es doch mal mit Induktion! Beispiel b):

IA: klar
IV: Die Aussage gelte für n.
IB:

[mm] $\summe_{k=0}^{n+1}\vektor{n+1 \\ k} [/mm] = [mm] \vektor{n+1 \\n+1} [/mm] +  [mm] \vektor{n+1 \\0} [/mm] +  [mm] \summe_{k=1}^{n}\vektor{n+1 \\ k}$ [/mm]

(Theoretisch hätte ich aus der obigen Summe nur den Summanden für $k = n+1$ rausziehen müssen, aber wegen der folgenden Umformung würden negative Werte entstehen, wenn k = 0 weiterhin in der Summe ist):

Nun wenden wir die Rechenregeln für Binomialkoeffizienten an:

[mm] $\vektor{n+1 \\ k} [/mm] = [mm] \vektor{n \\ k} [/mm] + [mm] \vektor{n\\k-1}$. [/mm]

-->

[mm] $\vektor{n+1 \\n+1} [/mm] +  [mm] \vektor{n+1 \\0} [/mm] +  [mm] \summe_{k=1}^{n}\vektor{n+1 \\ k} [/mm] = 2 +  [mm] \summe_{k=1}^{n}\left(\vektor{n \\ k} + \vektor{n\\ k-1}\right) [/mm] = 2 +  [mm] \summe_{k=1}^{n}\vektor{n \\ k} [/mm] + [mm] \summe_{k=1}^{n}\vektor{n\\ k-1}$ [/mm]

So, nun bist du dran.
- Verwende eine 1 von dem Summanden 2 vorn, um damit wieder den Summanden für k = 0 in die erste Summe zu bekommen.
- Bei der zweiten Summe solltest du eine Indexverschiebung durchführen, also die Summe so manipulieren, dass sie statt k = 1,...,n die Indizes k  = 0,...,n-1 durchläuft. Dadurch erreichst du, dass in der Summe wieder der "normale" Binomialkoeffizient [mm] \vektor{n\\k} [/mm] steht.
- Bei der zweiten  manipulierten Summe fehlt nun noch der Summand für k = n, da die Summe ja nur von k = 0 bis k = n-1 läuft, den fügst du mit Hilfe der zweiten 1 von dem Summanden 2 vorne ein.
- Nun zweimal IV, und es ist geschafft :-)

Auf ähnlichem Wege kannst du auch die anderen Beweise führen. Du musst halt schauen, was du für Rechenregeln mit den Binomialkoeffzienten machen kannst. Bei der a) wird es wahrscheinlich darauf hinauslaufen, dass du im Induktionsschritt eine Fallunterscheidung machst, ob n gerade oder n ungerade ist.

Die c) dürfte leichter gehen, vielleicht probierst du die als Nächstes. Wir erwarten Lösungsansätze!

Grüße,
Stefan

Bezug
                
Bezug
Beweis von natürlichen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 16.11.2009
Autor: Juliia

Mir wurde gesagt, dass ich  das ohne Induktion beweisen kann. Ich  habe das  versucht,  aber  weiss nicht  ob  erfolgreich:
[mm] \summe_{k=0}^{n}\vektor{n \\ k}=\summe_{k=0}^{n}\vektor{n \\ k}*1^{n-k}*k^{1}=(1+1)^{n}=2^{n} [/mm]
Ich weiss nicht  ob  das reicht...

Bezug
                        
Bezug
Beweis von natürlichen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mo 16.11.2009
Autor: steppenhahn

Hallo!

> Mir wurde gesagt, dass ich  das ohne Induktion beweisen
> kann. Ich  habe das  versucht,  aber  weiss nicht  ob  
> erfolgreich:
>  [mm]\summe_{k=0}^{n}\vektor{n \\ k}=\summe_{k=0}^{n}\vektor{n \\ k}*1^{n-k}*\red{1}^{k}=(1+1)^{n}=2^{n}[/mm]
>  
> Ich weiss nicht  ob  das reicht...

Du hast zwar einmal etwas vertauscht, aber ansonsten ist das ein guter Beweis (wenn ihr den Binomischen Satz verwenden dürft, wovon ich jetzt mal ausgehe).

c) geht fast genauso.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]