matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBeweis von erzeugender Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Beweis von erzeugender Fkt.
Beweis von erzeugender Fkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von erzeugender Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 So 22.06.2008
Autor: AnalysisKampfFlo

Aufgabe
Aufgabe 5.1

Man betrachte eine Folge unabhängiger Bernoulli-Experimente mit Erfolgswahrscheinlichkeit p ∈ (0, 1). Die Zufallsvariable [mm] X_r [/mm] gebe die Anzahl der Misserfolge bis zum r-ten Erfolg an. Hierbei ist r = 1, 2, . . . ein fester Parameter.

(a) Man zeige, dass für die erzeugende Funktion [mm] gx_r [/mm] gilt

[mm] gx_r(t)=\pmat{ \bruch{p}{1-t(1-p)}}^r, |t|<\bruch{1}{1-p}. [/mm]

(b) Man berechne den Erwartungswert und die Varianz von [mm] X_r. [/mm]

Ich brauche dringend ne Hilfestellung zu a) . Irgendeinen Ansatz, Hinweis.

Vielen Dank.

        
Bezug
Beweis von erzeugender Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Mo 23.06.2008
Autor: wauwau

[mm] P_{r}(X=m) [/mm] sei die Wahrscheinlichkeit, dass der r-te Erfolg nach m Misserfolgen eintrifft.
dann gilt
1. es gibt insgesamt m+r Versuche
2. bie den ersten m+r-1 Versuchen müssen m Misserfolge eintreffen

[mm] \vektor{m+r-1 \\ m} [/mm] ist die anzahl der Möglichkeiten m misserfolge auf m+r-1 Versuche aufzuteilen, daher
und unter den m+r-1 Versuchen muss ich r-1 Erfolge haben, sodaß beim m+r-ten Versuch der r-te Erfolg eintritt

[mm] P_{r}(X=m)=\vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r-1}.r [/mm] = [mm] \vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r} [/mm]

die Erzeugende funktion ist daher

[mm] \summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r}.t^m [/mm] = [mm] p^{r}.\summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.((1-p).t)^m [/mm]

Es bleibt daher zu zeigen, dass mit (1-p).t = x


[mm] \summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.x^m [/mm] = [mm] (\bruch{1}{1-x})^r [/mm]

Die Taylorentwicklung von  [mm] (\bruch{1}{1-x})^r [/mm] zeigt,

dass die k-te Ableitung von (1-x)^(-r) = [mm] \bruch{(r+k-1)!}{(r-1)!} [/mm] und daher der k-te Taylorkoeffizient genau der gesuchte Ausdruck ist..


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]