Beweis von Äquivalenzrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:42 Di 01.11.2011 | Autor: | Domme |
Aufgabe | Aufgabe 1.1) Es sei M eine Menge von X, Y [mm] \in [/mm] (M). Zeigen Sie, dass die Relation
X [mm] \sim [/mm] Y : [mm] \gdw \exists [/mm] f : X [mm] \to [/mm] Y bijektiv
eine Äquivalenzrelation ist.
Aufgabe 1.2) Es sei M eine Menge und A1,.....,An Teilmengen von M, so dass
Ai [mm] \cap [/mm] Aj = [mm] \emptyset, [/mm] i [mm] \not= [/mm] j, und M = A1 [mm] \cup [/mm] .... [mm] \cup [/mm] An.
Überprüfen Sie, ob die Relation
x [mm] \sim [/mm] y : [mm] \gdw \exists [/mm] Ai : x [mm] \in [/mm] Ai [mm] \wedge [/mm] y [mm] \in [/mm] Ai
eine Äquivalenzrelation ist. |
Ich soll beweisen, dass die beiden Relationen Äquivalenzrelationen sind.
Dazu muss ja das gelten:
A1) x [mm] \sim [/mm] x Reflexivität
A2) x [mm] \sim [/mm] y [mm] \Rightarrow [/mm] y [mm] \sim [/mm] x
A3) x [mm] \sim [/mm] y und y [mm] \sim [/mm] z [mm] \Rightarrow [/mm] x [mm] \sim [/mm] z
Ich weiß das bei Aufgabe 1.1 die Relation eine Äquivalenzrelation ist, weil die Abbildung der beiden Mengen bijektiv ist, aber ich kann dies nicht formal beweisen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Aufgabe 1.1) Es sei M eine Menge von X, Y [mm]\in[/mm] (M). Zeigen
> Sie, dass die Relation
> X [mm]\sim[/mm] Y : [mm]\gdw \exists[/mm] f : X [mm]\to[/mm] Y bijektiv
> eine Äquivalenzrelation ist.
>
> Aufgabe 1.2) Es sei M eine Menge und A1,.....,An Teilmengen
> von M, so dass
> Ai [mm]\cap[/mm] Aj = [mm]\emptyset,[/mm] i [mm]\not=[/mm] j, und M = A1 [mm]\cup[/mm] ....
> [mm]\cup[/mm] An.
> Überprüfen Sie, ob die Relation
> x [mm]\sim[/mm] y : [mm]\gdw \exists[/mm] Ai : x [mm]\in[/mm] Ai [mm]\wedge[/mm] y [mm]\in[/mm] Ai
> eine Äquivalenzrelation ist.
> Ich soll beweisen, dass die beiden Relationen
> Äquivalenzrelationen sind.
> Dazu muss ja das gelten:
> A1) x [mm]\sim[/mm] x Reflexivität
> A2) x [mm]\sim[/mm] y [mm]\Rightarrow[/mm] y [mm]\sim[/mm] x
> A3) x [mm]\sim[/mm] y und y [mm]\sim[/mm] z [mm]\Rightarrow[/mm] x [mm]\sim[/mm] z
>
> Ich weiß das bei Aufgabe 1.1 die Relation eine
> Äquivalenzrelation ist, weil die Abbildung der beiden
> Mengen bijektiv ist, aber ich kann dies nicht formal
> beweisen.
Zur Reflexivität nimmst du einfach die identische Abbildung id: [mm] X\to [/mm] X, die natürlich bijektiv ist
Symmetrie geht mit der Umkehrfunktion: Ist [mm] f:X\to [/mm] Y bijektiv, so auch [mm] f^{-1}:Y\to [/mm] X
Transitivität erhältst du, weil die Verknüpfung zweier bijektiver Abbildungen wieder bijektiv ist....
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:59 Di 01.11.2011 | Autor: | Domme |
Okay vielen Dank. Das habe ich verstanden.
Nur finde ich zu Aufgabe 1.2 gar keinen Ansatz, wie ich versuchen könnte dies zu beweisen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:03 Di 01.11.2011 | Autor: | fred97 |
> Okay vielen Dank. Das habe ich verstanden.
> Nur finde ich zu Aufgabe 1.2 gar keinen Ansatz, wie ich
> versuchen könnte dies zu beweisen?
[mm] \sim [/mm] ist in der Tat eine Ä.-Rel.
Reflexivität und Symmetrie dürften klar sein. Für die Transitivität beachte das [mm] A_i [/mm] und [mm] A_j [/mm] disjunkt sind für i [mm] \ne [/mm] j.
FRED
|
|
|
|