matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis von Sup und Inf
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Beweis von Sup und Inf
Beweis von Sup und Inf < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Sup und Inf: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 16.11.2005
Autor: Niente

Hallo,

ich habe eine Frage zur Beweisführung: Wie kann ich beweisen, dass eine nicht leere nach oben beschränkte Teilmenge ein Supremum und umgekehrt auch jede nach unten beschränkte Teilmenge ein Supremum hat. D.H. wie zeige ich, dass sup(S) = inf(-S). Komme da ger nicht weiter...;(. Ich hoffe, mir kann jemand helfen. Vielen Dnak schon einmal!!

Liebe Grüße
Niente

        
Bezug
Beweis von Sup und Inf: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 17.11.2005
Autor: angela.h.b.


> Hallo,
>  
> ich habe eine Frage zur Beweisführung: Wie kann ich
> beweisen, dass eine nicht leere nach oben beschränkte
> Teilmenge ein Supremum und umgekehrt auch jede nach unten
> beschränkte Teilmenge ein Supremum hat. D.H. wie zeige ich,
> dass sup(S) = inf(-S). Komme da ger nicht weiter...;(.

Hallo, daß was Du da schreibst, wirst Du so, wie's da steht, nicht beweisen können...
Wenn Deine Grundmenge nämlich [mm] \IQ [/mm] ist, hat nicht jede beschränkte Teilmenge ein Supremum.

Allerdings - in der Grundmenge [mm] \IR [/mm] gilt die Behauptung.
Und sie ist so bekannt und wichtig, daß der Beweis in nahezu jedem Analysisbuch zu finden ist, wenn nicht gar in jedem.
Man zeigt es mit Intervallhalbierung.
Nimmt eine obere Schranke [mm] S_0 \in \IR [/mm]  und ein Element [mm] x_0 [/mm] aus der Teilmenge S und konstruiert eine Intervallschachtelung so, daß

[mm] [x_{n+1}, S_{n+1}] \subseteq [x_n, S_n] [/mm] und [mm] S_n-x_n \le2^{-n}(S_0-x_0). [/mm]

Die Folge [mm] S_n [/mm] ist monoton fallend und beschränkt, hat also einen Grenzwert, von welchem man anschließend zu zeigen hat, daß er eine obere Schranke von S ist, und daß es keine kleinere gibt.

Gruß v.    Angela



Bezug
                
Bezug
Beweis von Sup und Inf: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 17.11.2005
Autor: Niente

Hey Angela,

danke für deine Antwort. Habe leider aber nicht viel verstanden;(. Du hast recht, zu zeigen ist das Ganze nur für die reellen Zahlen...
Ich verstehe gar nicht, wie du auf die Intervallschachtelung gekommen bist,  geschweige denn,  wie ich beweisen kann, dass etwas die größte Schranke ist...;(;( In meinem Buch habe ich auch nichts gefunden...;(

Bitte helft mir! Vielen Dank schon einmal!!!

Bezug
                        
Bezug
Beweis von Sup und Inf: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 17.11.2005
Autor: angela.h.b.


> Hey Angela,

>  
> danke für deine Antwort. Habe leider aber nicht viel
> verstanden;(. Du hast recht, zu zeigen ist das Ganze nur
> für die reellen Zahlen...
>  Ich verstehe gar nicht, wie du auf die
> Intervallschachtelung gekommen bist,  geschweige denn,  wie
> ich beweisen kann, dass etwas die größte Schranke
> ist...;(;( In meinem Buch habe ich auch nichts
> gefunden...;(

Hast Du schonmal da nachgeguckt, wo erklärt ist, was Intervalle sind und so?

Du hast also eine Teilmenge [mm] \emptyset \not= [/mm] T [mm] \subseteq \IR. [/mm] Nach Voraussetzung ist T beschränkt, d. h. es gibt ein [mm] K_0 \in \IR [/mm] mit [mm] K_0 \ge [/mm] T für alle x [mm] \in [/mm] T.

Weil T [mm] \not= \emptyset, [/mm] gibt es ein [mm] x_0 \in [/mm] T.

Weil [mm] K_0 [/mm] obere Schranke, ist [mm] x_0 \le K_0. [/mm]

Jetzt kann man hieraus sich eine Folge [mm] (x_n) [/mm] und [mm] (K_n) [/mm] konstruieren, rekursiv wie folgt:

Betrachte das Intervall [mm] [x_n, K_n]. [/mm]

Es ist   [mm] \bruch{K_n-x_n}{2} [/mm] die Mitte des Intervalls.

Ist [mm] \bruch{K_n-x_n}{2} [/mm] obere Schranke von T, so setze [mm] x_{n+1}:=x_n [/mm] und [mm] K_{n+1}:={K_n-x_n}{2} [/mm]

Andernfalls wähle ein Element [mm] x_n+1 [/mm] im Intervall [mm] ]\bruch{K_n-x_n}{2}, K_n] \cap [/mm] T.

Über diese Folgen kann man per Induktion zeigen: [mm] (x_n) [/mm] ist monoton wachsend, [mm] (K_n) [/mm] ist monoton fallend, und [mm] K_n-x_n \le2^{-n}(K_0-x_0). [/mm]

[mm] (K_n) [/mm] ist nicht nur monoton fallend, sondern auch nach unten beschränkt (wodüurch?).
Daher konvergiert die Folge gegen ein K [mm] \in \IR. [/mm]

Jetzt - wenn Du alles soweit verstanden hast und Dir zwecks Verständnis passende Bildchen gemalt hast (Führe diese Intervallhalbierungsmethode wirklichmal an einem Beispiel durch!) - mußt Du Dir überlegen, daß der Grenzwert K eine obere Schranke ist für T.

Und anschließend, warum es keine kleinere gibt. dazu kannst Du annehmen, daß es eine kleinere gibt, und das zum Widerspruch führen.

Gruß v. Angela











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]