Beweis von NSTs eines Polynoms < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | 1. Seien a,b,c,d [mm] \in \IR [/mm] , a [mm] \not= [/mm] 0. Zeigen Sie: das Polynom P(x)=a [mm] x^{173} [/mm] + b [mm] x^{80} [/mm] + c [mm] x^{3} [/mm] + dx + 187 hat stets eine reelle Nullstelle.
2. Sowie f:[a,b] [mm] \to \IR [/mm] stetig und f( [mm] x_{0} [/mm] ) > 0 für ein [mm] x_{0} \in [/mm] (a,b)
Zeigen Sie: es ex eine Umgebung [mm] U(x_{0}) \subset [/mm] (a,b) mit f(x)>0 für alle x [mm] \in [/mm] U( [mm] x_{0})
[/mm]
|
Hallo,
meine Idee zu 1.: mit dem Zwischenwertsatz für stetige Funktionen. Ich weiß aber nicht so richtig wie ich das sauber aufschreibe.
zu 2. habe ich leider keine Idee.
L G
Phys1kauer
|
|
|
|
Hallo!
> 1. Seien a,b,c,d [mm]\in \IR[/mm] , a [mm]\not=[/mm] 0. Zeigen Sie: das
> Polynom P(x)=a [mm]x^{173}[/mm] + b [mm]x^{80}[/mm] + c [mm]x^{3}[/mm] + dx + 187 hat
> stets eine reelle Nullstelle.
Mit dem Zwischenwertsatz genügt es ja, zwei Punkte [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] zu finden mit [mm] $P(x_1)>0>P(x_2)$.
[/mm]
Du kannst zum Beispiel [mm] $x_1=0$ [/mm] wählen. Jetzt musst du dir nur noch überlegen, dass entweder [mm] $\lim_{x\to-\infty}P(x)=-\infty$ [/mm] oder [mm] $\lim_{x\to\infty}P(x)=-\infty$, [/mm] je nachdem, ob $a>0$ oder $a<0$.
> 2. Sowie f:[a,b] [mm]\to \IR[/mm] stetig und f( [mm]x_{0}[/mm] ) > 0 für ein
> [mm]x_{0} \in[/mm] (a,b)
> Zeigen Sie: es ex eine Umgebung [mm]U(x_{0}) \subset[/mm] (a,b) mit
> f(x)>0 für alle x [mm]\in[/mm] U( [mm]x_{0})[/mm]
Benutze hierfür die [mm] $\epsilon-\delta$-Definition [/mm] der Stetigkeit. Wähle [mm] $\epsilon:=\frac [/mm] 12 [mm] f(x_0)$...
[/mm]
Kommst du jetzt mit den Aufgaben zurecht?
Gruß, banachella
|
|
|
|
|
Hallo,
1. ist soweit abgehakt.
2. Bei zweitens kann ich mir zwar bildhaft vorstellen was gemeint ist, nur habe ich sowas noch nie selber bewiesen. Ich brauch also etwas mehr hilfe. Die Definition ist mir soweit klar, denke ich.
|
|
|
|
|
> 2. Bei zweitens kann ich mir zwar bildhaft vorstellen was
> gemeint ist, nur habe ich sowas noch nie selber bewiesen.
> Ich brauch also etwas mehr hilfe. Die Definition ist mir
> soweit klar, denke ich.
Hallo,
schreib' Dir die [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Definition für Steitigkeit noch einmal auf.
Bedenke, daß Du bereits weißt, daß die Funktion stetig ist. Also ist sie an der Stelle [mm] x_0 [/mm] stetig.
Nun gibt Dir [mm] \varepsilon:=\bruch{1}{2}f(x_0) [/mm] vor.
Was teilt Dir die Def. nun mit? Es gibt ein ..., so daß...
Gruß v. Angela
|
|
|
|