matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Beweis von Minimum und Maximum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Beweis von Minimum und Maximum
Beweis von Minimum und Maximum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Minimum und Maximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Fr 29.10.2010
Autor: BerlinerKindl

Aufgabe
Für Teilmengen M, N ⊂ R setzen wir M · N = {x · y | x ∈ M, y ∈ N}
und falls 0 ∈/ M
Wir nehmen fu ̈r das Folgende an, dass max M , max N und min M existieren.
Beweisen oder widerlegen Sie:
(i) max(M · N ) existiert und es gilt
      max(M · N) = max M · max N.
(iii) Existiert für alle x ∈ M ein y ∈ N mit x ≤ y,so folgt
      max M ≤ max N.
(iv) Existiert für alle x ∈ M ein y ∈ N mit y ≤ x,so folgt
      max N ≤ min M.

Hi =),
Ich habe ein paar Fragen zu den Sachen, die ich als Aufgabe hingeschrieben habe. Anfangen würde ich bei
(iii) max M < max N
      0= max N - max M | - max M := min -M
      0= max N + min -M| - min -M
      - min -M  < max N
gilt das als Beweis, ist meine platte Frage -.-'

Ähnlich wäre mein Rangehen an (iv) übrigens auch.

Bei (i) fehlt mir schlichtweg die Anfangsidee...Für eine eventuelle Hilfestellung wäre ich sehr dankbar. =)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis von Minimum und Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Sa 30.10.2010
Autor: Schadowmaster

was hast du dir denn da bei (iii) gebastelt?^^
zu aller erst mal gehst du davon aus, dass max M < max N.
Das willst du eigendlich beweisen, also wieso gehst du davon aus?
Dann formst du das um und hast am Ende nur wieder max M < max N da stehen...
Dabei kannst du bei (iii) doch so schön sagen: da x [mm] $\le$ [/mm] y für alle x [mm] $\in$ [/mm] M und da max M [mm] $\in$ [/mm] M gibt es ein y [mm] $\in$ [/mm] N das größer oder gleich max M ist.
Und damit bist du doch so gut wie fertig...
Aber (iv) geht dann so ähnlich, ja.

Zu (i):
Da ich gerade sehe, das nirgends gesagt ist, dass die Teilmengen positiv sein müssen, behaupte ich einfach mal (i) gilt im allgemeinen nicht.
Bastel dir die Mengen mit negativen Werten und gib ein schönes Gegenbeispiel an. ;)

Bezug
                
Bezug
Beweis von Minimum und Maximum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Sa 30.10.2010
Autor: Gonozal_IX

Huhu,

>  Aber (iv) geht dann so ähnlich, ja.

mit dem Unterschied, dass (iv) falsch ist ;-)

  

> Zu (i):
>  Da ich gerade sehe, das nirgends gesagt ist, dass die
> Teilmengen positiv sein müssen, behaupte ich einfach mal
> (i) gilt im allgemeinen nicht.

korrekt :-)


MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]