matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis von Gruppe für n aus N
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis von Gruppe für n aus N
Beweis von Gruppe für n aus N < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Gruppe für n aus N: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:28 Mo 14.11.2016
Autor: asg

Aufgabe
Für welche [mm]n \in \IN[/mm] ist [mm](\IZ_n \setminus \{0\}, \odot_n)[/mm] eine Gruppe? Beweisen Sie Ihre Antwort.
Die Menge [mm]\IZ_n[/mm] ist definiert als [mm]\IZ_n = \{0,1,\dots,n-1\}[/mm]
Sie dürfen als bereits bewiesen voraussetzen, dass die Verknüpfungen [mm] \odot_n [/mm] assoziativ sind.

Hallo,

bei dieser Aufgabe muss ich ja die drei Gruppenaxiome (Abgeschlossenheit, Neutrales Element, Inverses Element) zeigen, dass sie gelten. Die Assoziativität ist ja als bereits bewiesen vorausgesetzt.

Das Neutrale Element ist [mm]e = 1[/mm] denn [mm]1*a_\odot_n=a*1_\odot_n=a[/mm] [mm]\forall a \in \IZ_n \setminus \{0\}[/mm]

Für die Axiome Abgeschlossenheit und Inverses Element fehlt mir die Idee.
Was ich mir bisher überlegt habe ist folgendes zur Abgeschlossenheit:
[mm]a * b = n * k + r[/mm] [mm]\forall a, b \in \IZ_n \setminus \{0\}[/mm]  [mm]\exists r \in \IZ_n \setminus \{0\}[/mm] [mm]\exists k \in \IN_n \setminus \{0\}[/mm]
[mm]n = \frac{a*b-r}{k}[/mm]

Ich weiß hier nicht weiter ...

Auch zum Inversen Element habe ich keine Idee ...

Ich würde mich über Tipps und Hilfe freuen.

Danke vorab

Viele Grüße

Asg

        
Bezug
Beweis von Gruppe für n aus N: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 Mo 14.11.2016
Autor: angela.h.b.


> Für welche [mm]n \in \IN[/mm] ist [mm](\IZ_n \setminus \{0\}, \odot_n)[/mm]
> eine Gruppe? Beweisen Sie Ihre Antwort.
> Die Menge [mm]\IZ_n[/mm] ist definiert als [mm]\IZ_n = \{0,1,\dots,n-1\}[/mm]

Hallo,

nun wäre es natürlich auch ganz gut, wenn wir erfahren dürften, wie die Verknüpfung [mm] \odot_n [/mm] definert ist - auch, wenn "man" es sich schon "irgendwie" denken kann.

>

> Sie dürfen als bereits bewiesen voraussetzen, dass die
> Verknüpfungen [mm]\odot_n[/mm] assoziativ sind.
> Hallo,

>

> bei dieser Aufgabe muss ich ja die drei Gruppenaxiome
> (Abgeschlossenheit, Neutrales Element, Inverses Element)
> zeigen, dass sie gelten. Die Assoziativität ist ja als
> bereits bewiesen vorausgesetzt.

>

> Das Neutrale Element ist [mm]e = 1[/mm] denn
> [mm]1*a_\odot_n=a*1_\odot_n=a[/mm] [mm]\forall a \in \IZ_n \setminus \{0\}[/mm]

Du wolltest wohl eher schreiben

[mm] 1\odot_n a=a\odot_n=a [/mm] für alle [mm] a\in \IZ_n\setminus \{0\}, [/mm]

denn a*1=1*a=a=0*n+a. Oder so ähnlich.

Jedenfalls ist 1 neutrales Element, das stimmt.


Hast Du denn schon eine Idee entwickelt, für welche n man eine Gruppe bekommt und für welche nicht?
Das Beweisen fällt leichter, wenn man weiß, was man zeigen möchte.

Untersuche dazu doch zunächst einmal ganz konkret (Verknüpfungstafel) z.B. n=3,4,7,9, 10.

Was fällt auf? Für welche n ist [mm] \IZ_n\setminus\{0\} [/mm] nict abgeschlossen unter der hier betrachteten Multiplikation? Wie kommt das?

LG Angela



>

> Für die Axiome Abgeschlossenheit und Inverses Element
> fehlt mir die Idee.
> Was ich mir bisher überlegt habe ist folgendes zur
> Abgeschlossenheit:
> [mm]a * b = n * k + r[/mm] [mm]\forall a, b \in \IZ_n \setminus \{0\}[/mm]
> [mm]\exists r \in \IZ_n \setminus \{0\}[/mm] [mm]\exists k \in \IN_n \setminus \{0\}[/mm]

>

> [mm]n = \frac{a*b-r}{k}[/mm]

>

> Ich weiß hier nicht weiter ...

>

> Auch zum Inversen Element habe ich keine Idee ...

>

> Ich würde mich über Tipps und Hilfe freuen.

>

> Danke vorab

>

> Viele Grüße

>

> Asg


Bezug
                
Bezug
Beweis von Gruppe für n aus N: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Mi 23.11.2016
Autor: asg

Hallo Angela,

Dankeschön für die super schnelle Hilfe und tut mir leid für die sehr späte Rückmeldung von mir - ich musste für die anderen Veranstaltungen Vorbereitungen machen ...

Ich sehe es nun nachdem ich die Verknüpfungstabellen erstellt habe. Die Antwort ist nämlich: $ [mm] (\IZ_n \setminus \{0\}, \odot_n) [/mm] $ ist für alle $ n [mm] \in \IP$ [/mm] eine Gruppe.

Ich werde noch den Beweis dafür schreiben und melde mich nochmals ...

Bis dann

Liebe Grüße

Asg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]