matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis von Grenzwerten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Beweis von Grenzwerten
Beweis von Grenzwerten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Di 10.01.2006
Autor: pizzatonno

Aufgabe
Beweisen Sie die folgenden Gleichungen:

a)    [mm] \limes_{n\rightarrow\infty} \bruch{n^{k}}{a^{n}} [/mm] = 0     (a > 1)

b)    [mm] \limes_{n\rightarrow\infty} \bruch{a^{n}}{n!} [/mm] = 0     (a [mm] \in \IR) [/mm]

Hallo, kann mir jemand helfen, diese Grenzwerte zu beweisen?

Ich habe versucht es mit der Epsilon-Definition zu machen, bin aber daran gescheitert, nach n aufzulösen. Gibt es da noch andere Methoden?

Gruß Matze

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis von Grenzwerten: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:39 Di 10.01.2006
Autor: Loddar

Hallo pizzatonno!


Diese Aufgabe wurde (sehr ähnlich) hier bereits vor einigen Tagen gestellt ...


Bei Aufgabe 1 kannst Du den MBGrenzwertsatz nach de l'Hospital $k_$-mal anwenden, da Du jeweils den Ausdruck [mm] $\bruch{\infty}{\infty}$ [/mm] erhältst.


Bei Aufgabe 2 zunächst den Ausdruck umschreiben:

[mm] $\bruch{a^{n}}{n!} [/mm] \ = \ [mm] \bruch{\overbrace{a*a*a*...*a*a}^{n \ Faktoren}}{\underbrace{1*2*3*...*(n-1)*n}_{n \ Faktoren}} [/mm] \ = \ [mm] \underbrace{\bruch{a}{1}*\bruch{a}{2}* \bruch{a}{3}*...*\bruch{a}{n-1}* \bruch{a}{n}}_{n \ Faktoren}$ [/mm]

Nun Grenzwertbetrachtung ...


Gruß
Loddar


Bezug
                
Bezug
Beweis von Grenzwerten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:09 Mi 11.01.2006
Autor: pizzatonno

Hallo Loddar,

Vielen Dank für die schnelle Antwort!

Hab dein Tipp ausprobiert und bin auf folgende Ergebnisse gekommen:

a)  nach k-fachem anwenden von L'Hospital:  
      
     [mm] \limes_{n\rightarrow\infty} \bruch{k!}{n!} [/mm] = 0


b)  gut...mit deinem Tipp*g* - Danke!


Stimmt die Teilaufgabe a) soweit?

Gruß Pizzatonno


Bezug
                        
Bezug
Beweis von Grenzwerten: falsche Ableitung?
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 11.01.2006
Autor: Loddar

Hallo pizzatonno!


Wie kommst Du auf den Nenner des Bruches? Ich denke, da hast Du jeweils falsch die Ableitung gebildet.

[mm] $\left( \ a^x \ \right)' [/mm] \ = \ [mm] \ln(a)*a^x$ [/mm]


Was erhältst Du also nach $k_$-mal ableiten?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]