matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis, vollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Beweis, vollständige Induktion
Beweis, vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis, vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 19.01.2006
Autor: Julchen01

Aufgabe
Zeigen Sie: für n [mm] \in \IN, [/mm] n > 3 gilt:  [mm] n^{2} \le 2^{n}. [/mm]

Hallo !
Bräuchte hier mal eure fachmännische Hilfe, bei dieser Aufgabe.

Also ich denk mal, daß kann man ganz gut mit vollständiger Induktion beweisen. Bloß irgendwie komm ich nicht ganz durch und bleib mitten drin hängen !

Also ich fang einfach mal vorn an:

Induktionsanfang (für n=4)

[mm] 4^{2} \le 2^{4}; [/mm] 16 [mm] \le [/mm] 16 (und dies ist eine wahre Aussage)

Induktionsschritt (Schluß von n auf n+1)

[mm] (n+1)^{2} \le 2^{n+1}; [/mm]
[mm] n^{2} [/mm] + 2n + 1 [mm] \le 2^{n} [/mm] * 2;
[mm] n^{2} [/mm] + 2n + 1 [mm] \le 2^{n} [/mm] + [mm] 2^{n}; [/mm]

So, jetzt ist nach Induktionsvoraussetzung [mm] n^{2} \le 2^{n} \Rightarrow [/mm] ich muss nur noch zeigen, daß 2*n + 1 [mm] \le 2^{n} [/mm] ... Kann man das so sagen ? Ist das denn überhaupt richtig so ?

Wie zeige ich das denn jetzt ? Wieder durch vollständige Induktion ? Oder gibts da noch irgendne andere Möglichkeit ?
Oder hab ich da irgendwo nen Fehler drin !?

Ciao, danke :-) !


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis, vollständige Induktion: Tipp
Status: (Antwort) fertig Status 
Datum: 15:10 Do 19.01.2006
Autor: topspin85

Hallo!

Die Aufgabe zeigt man auf jeden Fall durch vollständige Induktion. Deine Induktionsvoraussetzung ist so richtig, beim Induktionsschritt würde ich genauso beginnen, dann aber folgendermaßen weitermachen:

[mm] 2^{n+1} [/mm] = [mm] 2*2^{n} [/mm]

Laut Induktionsannahme (für n [mm] \ge [/mm] 4) folgt (durch beidseitige Multiplikation mit 2)

[mm] 2*2^{n} \ge 2*n^{2} [/mm]

Als nächstes bestimmst du die n, für die gilt: [mm] 2n^{2} \ge (n+1)^{2}, [/mm] sodass gilt

[mm] 2^{n+1} \ge 2*n^{2} \ge (n+1)^{2} [/mm]

Also: [mm] 2n^{2} \ge n^{2} [/mm] + 2n + 1

Jetzt kommst du sicherlich auch weiter...?!

Ciao, Jan

Bezug
                
Bezug
Beweis, vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Do 19.01.2006
Autor: Julchen01

Super, danke !

Ja, das hat mir weitergeholfen ...

Aber allein wäre ich da niemals drauf gekommen, dass man das so macht ... :-( !



Bezug
                        
Bezug
Beweis, vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Do 19.01.2006
Autor: topspin85

Die Aufgabe war in ähnlicher Form auf einem unserer Übungsblätter zu lösen. Hat aber auch bei mir damals erstmal eine ganze Weile gedauert, auf den Ansatz zu kommen bzw. es richtig zu interpretieren... Also nicht verzweifeln ;-)

Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]