matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBeweis rekurrent transient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Beweis rekurrent transient
Beweis rekurrent transient < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis rekurrent transient: Beweis aus Buch nachvollziehen
Status: (Frage) überfällig Status 
Datum: 14:00 Mo 05.08.2013
Autor: johnny23

Liebes Forum,

wie ich auch bereits in einem anderen Post erwähnte, beschäftige ich mich gerade mit Markow-Ketten und lese dazu das Kapitel 8 aus dem Rosanow Wahrscheinlichkeitstheorie. Nun sind die meisten Beweise einleuchtend. Allerdings kann ich einige Beweise auch nicht nachvollziehen und würde mich sehr über eure Hilfe freuen.

Beweis aus Buch:

Einführung: Zustand [mm] \varepsilon{j} [/mm] ist von [mm] \varepsilon{i} [/mm] erreichbar, wenn die Übergangswahrscheinlichkeit [mm] p_{ij}(M)=\alpha>0 [/mm] mit [mm] M\in\IN. [/mm] Ist [mm] \varepsilon{i} [/mm] ein rekurrenter Zustand und ist [mm] \varepsilon{j} [/mm] von [mm] \varepsilon{i} [/mm] aus erreichbar, dann ist auch [mm] \varepsilon{i} [/mm] von [mm] \varepsilon{j} [/mm] aus erreichbar und es ist [mm] p_{ji}(N)=\beta>0 [/mm] mit [mm] N\in\IN. [/mm]

(Dies ist einleuchtend, nun soll beweisen werden, dass [mm] \varepsilon{j} [/mm] dann auch rekurrent ist)

Aus [mm] P(n)=P^{n} [/mm] (P ist die Übergangsmatrix für n Schritte) folgt:

P(n+M+N)=P(N)P(n)P(M) (auch klar soweit)

Dann ergibt sich:

[mm] p_{ii}(n+M+N)\ge p_{ij}(M)p_{jj}(n)p_{ji}(N)=\alpha\beta p_{jj}(n) [/mm]

[mm] p_{jj}(n+M+N)\ge p_{ji}(M)p_{ii}(n)p_{ij}(N)=\alpha\beta p_{ii}(n) [/mm]

Diese Ungleichungen zeigen, dass die Reihen

[mm] \summe_{n=1}^{\infty}p_{ii}(n) [/mm] und [mm] \summe_{n=1}^{\infty}p_{jj}(n) [/mm]

entweder beide konvergieren oder beide divergieren.

!Diesen Schritt kann ich leider nicht nachvollziehen. Wie ergeben sich die beiden Ungleichungen? Und wieso zeigen die beiden Ungleichungen, dass die beiden Reihen entweder divergieren oder konvergieren? Der letzte Schritt ist dann wieder klar: Weil [mm] \varepsilon_{i} [/mm] rekurrent ist, divergiert die Reihe [mm] \summe_{n=1}^{\infty}p_{ii}(n) [/mm] und dann divergiert nach obigem Beweis auch die Reihe [mm] \summe_{n=1}^{\infty}p_{jj}(n) [/mm] und damit ist auch [mm] \varepsilon_{j} [/mm] rekurrent.

Über jede Hilfe bin ich wie immer sehr dankbar. Vielen Dank!

Viele Grüße!



        
Bezug
Beweis rekurrent transient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Di 06.08.2013
Autor: johnny23

Gibt es denn keinen, der weiterhelfen kann?

Bezug
        
Bezug
Beweis rekurrent transient: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 09.08.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]