matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis oder Widerspruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Beweis oder Widerspruch
Beweis oder Widerspruch < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis oder Widerspruch: abbrechender Dezimalbruch
Status: (Frage) beantwortet Status 
Datum: 18:37 So 15.06.2008
Autor: L1NK

Aufgabe
Sei ID die Menge der rationalen Zahlen, die sich als abbrechender Dezimalbruch darstellen lassen.
(a) Zeigen Sie: Für alle a, b ∈ ID gilt a + b ∈ ID und a · b ∈ ID.
(b) Zeigen Sie: Zwischen je zwei verschiedenen Bruchzahlen liegt immer eine Zahl, die sich als abbrechender Dezimalbruch schreiben läßt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, hab keinerlei Ansatzpunkt...

Vielen Dank schonmal.
Gruss L1NK

        
Bezug
Beweis oder Widerspruch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 15.06.2008
Autor: Somebody


> Sei ID die Menge der rationalen Zahlen, die sich als
> abbrechender Dezimalbruch darstellen lassen.
>  (a) Zeigen Sie: Für alle a, b ∈ ID gilt a + b
> ∈ ID und a · b ∈ ID.
>  (b) Zeigen Sie: Zwischen je zwei verschiedenen Bruchzahlen
> liegt immer eine Zahl, die sich als abbrechender
> Dezimalbruch schreiben läßt.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo, hab keinerlei Ansatzpunkt...

$a$ lässt sich genau dann als abbrechender Dezimalbruch schreiben, wenn es ein [mm] $n_a\in \IN$ [/mm] gibt, so dass [mm] $a\cdot 10^{n_a}\in \IZ$ [/mm] gilt. Analog für $b$. Zu zeigen wäre also z.B. dass es unter dieser Voraussetzung für $a$ und $b$ ein [mm] $n\in \IN$ [/mm] gibt, so dass [mm] $(a+b)\cdot 10^{n}$ [/mm] eine ganze Zahl ist. Nun, wähle $n := [mm] \max(n_a,n_b)$, [/mm] dann ist [mm] $a\cdot 10^{n}\in \IZ$ [/mm] und auch [mm] $b\cdot 10^{n}\in \IZ$, [/mm] also [mm] $a\cdot 10^{n}+b\cdot 10^{n}=(a+b)\cdot 10^n\in \IZ$. [/mm]
Analog verläuft der Beweis, dass sich [mm] $a\cdot [/mm] b$ als abbrechender Dezimalbruch schreiben lässt.

Um (b) zu beweisen, könnte man etwa zeigen, dass sich auch $c := [mm] \frac{a+b}{2}$ [/mm] als abbrechender Dezimalbruch schreiben lässt. Denn es ist [mm] $c\cdot 10^{\max(n_a,n_b)+1}=5\cdot (a+b)\cdot 10^{\max(n_a,n_b)}\in \IZ$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]