matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis mit stetiger Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Beweis mit stetiger Funktion
Beweis mit stetiger Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit stetiger Funktion: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:09 Do 13.01.2005
Autor: royalbuds

Hallo,

wie kann ich die folgende Aufgabe lösen?

[mm] f:\IR \to \IR [/mm] eine stetige Funktion mit der Eigenschaft: für alle x,y [mm] \in \IR [/mm] gilt f(x+y) = f(x) + f(y). Zeigen Sie, dass es ein [mm] \lambda \in \IR [/mm] gibt mit f(x) = [mm] \lambda [/mm] *x

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis mit stetiger Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Do 13.01.2005
Autor: andreas

hallo royalbuds


du erhälst hier eher eine antwort auf deine frage, wenn du eigene lösungsansätze mitlieferst oder wenigstens konkrete fragen stellst (siehe auch foren-regeln).
ich gebe dir trotzdem mal den tipp die forensuche zu bemühen, diese frage wurde innerhalb der letzten zwei wochen schon einmal in diesem forum gestellt.


grüße
andreas

Bezug
                
Bezug
Beweis mit stetiger Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Do 13.01.2005
Autor: royalbuds

Hab jetzt einige Ansätze. Wo soll ich die denn jetzt schreiben? Kann ich meinen ersten Post nicht ändern?

Bezug
                        
Bezug
Beweis mit stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 13.01.2005
Autor: andreas

hallo

> Hab jetzt einige Ansätze. Wo soll ich die denn jetzt
> schreiben?

wenn du neue fragen stellen kannst eröffne doch einfach eine neue frage (in diesem strang - also jetzt einfach auf "Ich möchte jetzt eine Frage zu dieser Antwort stellen." klicken) und poste darin deine ansätze!

> Kann ich meinen ersten Post nicht ändern?

normalerweise schon. das liegt hier wohl daran, dass der auf den status "nur für interessierte gesetzt war".


also dann mal her mit deinen ansätzen.


grüße
andreas

Bezug
                                
Bezug
Beweis mit stetiger Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Do 13.01.2005
Autor: royalbuds

ok,

die Funktion ist ja linear. Also kann ich f(1)=  [mm] \lambda [/mm] schreiben. f(2)=2*f(1), f(3)=3a. Bin mir jetzt leider nicht sicher wie ich weitermachen kann bzw. muss. Ist mein Ansatz überhaupt korrekt?

Gruß

Bezug
                                        
Bezug
Beweis mit stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 13.01.2005
Autor: andreas

hi

hast du mal im forum nach der alten frage gesucht? dort wurde eine vorgehensweise skizziert.
ich würde mir zuerst überlegen, was [m] f(0) [/m] ist. wenn du die forderung an die funktion anwendest erhälst du doch [m] f(0) = f(0+0) = f(0) + f(0) [/m] wenn du den ersten und letzten ausdruck vergleichst, was folgt dann?
deine vorgehensweise ist übrigens nicht falsch - es fehlen aber ein paar schritte, oder?

grüße
andreas

Bezug
                                                
Bezug
Beweis mit stetiger Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 13.01.2005
Autor: royalbuds

Hallo,

>  ich würde mir zuerst überlegen, was [m]f(0)[/m] ist. wenn du die
> forderung an die funktion anwendest erhälst du doch [m]f(0) = f(0+0) = f(0) + f(0)[/m]
> wenn du den ersten und letzten ausdruck vergleichst, was
> folgt dann?

wenn ich hiervon ausgehe [m]f(0) = f(0+0) = f(0) + f(0)[/m] ,  ist [m]\lambda*0 = f(0) + f(0) \Rightarrow\lambda*(0 + 0) = f(0) + f(0) [/m] , also [m] \lambda*\underbrace{(x+y)}_{=x'} = f(x) + f(y) = f(x+y)[/m]

Genügt das als Beweis?

Gruß
Royal

Bezug
                                                        
Bezug
Beweis mit stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Sa 15.01.2005
Autor: andreas

hi

dein vorgehen ist mir derzeit nicht so wirklich klar. setze z.b. hier [m] f(1) := \lambda [/m], dann gilt [m] f(2) = f(1+1) = f(1) + f(1) = \lambda + \lambda = 2 \lambda [/m]. diese wissen kannst du nun auf ganz [m] \mathbb{N} [/m] ausbreiten (induktion ?).
dann kannst du wegen [m] 0 = f(0) = f(1 + (-1)) = f(1) + f(-1) = \lambda + f(-1) [/m], also [m] f(-1) = - \lambda [/m] folgern. damit folgt die analoge aussage auch für [m] \mathbb{Z} [/m].
für argumente aus  [m] \mathbb{Q} [/m] kannst du dir ja selber mal etwas überlegen und um die aussage dann schleißlich für ganz [m] \mathbb{R} [/m] zu zeigen benötigst du die stetigkeit und die dichtheit von [m] \mathbb{Q} [/m] in [m] \mathbb{R} [/m].

probiere doch am besten den beweis soweit auszuarbeiten, wie du kommst und hier aufzuschrieben.


grüße
andreas

Bezug
        
Bezug
Beweis mit stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Do 13.01.2005
Autor: moudi


> Hallo,
>  
> wie kann ich die folgende Aufgabe lösen?
>  
> [mm]f:\IR \to \IR[/mm] eine stetige Funktion mit der Eigenschaft:
> für alle x,y [mm]\in \IR[/mm] gilt f(x+y) = f(x) + f(y). Zeigen Sie,

Diese Eigenschaft ist gerade die Linearität einer Abbildung (wie in der Linearen Algebra). Aber man kann nicht folgen, dass es ein [mm] $\IR$-lineare [/mm] Abbildung ist. Sondern nur eine lineare Abbildung für den kleinsten Teilkörper, der die ganzen Zahlen enthält, also [mm] $\IQ$. [/mm]
Langer Rede kurzer Sinn: Aus der Eigenschaft kann man schliessen, dass f eine [mm] $\IQ$-lineare [/mm] Abbildung von [mm] $\IR\to\IR$ [/mm] ist.  Schränkt man f auf die [mm] $\IQ$ [/mm] ein, so muss ein [mm] $\lambda$ [/mm] existieren, sodass [mm] $f(x)=\lambda [/mm] x$ ist.  Denn die Menge [mm] $\IQ$ [/mm] ist ein eindimesionaler [mm] $\IQ$-linearer [/mm] Unterraum von [mm] $\IR$. [/mm] (A propos, die Zahl [mm] $\lambda$ [/mm] kann eine irrationale Zahl sein, muss also nicht rational sein).

Weil die Menge [mm] $\IQ$ [/mm] dicht in [mm] $\IR$ [/mm] liegt, und f stetig ist, gibt es eine eindeutige stetige Fortsetzung auf ganz [mm] $\IR$. [/mm] Diese Stetige Fortsetzung hat natürlich den gleichen Funktionsterm [mm] $f(x)=\lambda [/mm] x$.

mfG Moudi

> dass es ein [mm]\lambda \in \IR[/mm] gibt mit f(x) = [mm]\lambda[/mm] *x
>  
> Gruß
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]