matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeweis mit kgV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Beweis mit kgV
Beweis mit kgV < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit kgV: Ansatz, Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 03.12.2011
Autor: Catman

Aufgabe
Beweisen Sie:
1. Für alle c,a1,...,an [mm] \in [/mm] Z \ {0} gilt
[mm] kgV(c*a_{1},...,c*a_{n}) [/mm] = |c| * kgV [mm] (a_{1}...,a_{n}) [/mm]
2. Sind [mm] a_{1},...,a_{n} \in [/mm] Z \ {0} paaweise teilerfremd, so gilt kgV [mm] (a_{1},...a_{n}) [/mm] = [mm] |a_{1}*,a_{2}*...*a_{n}| [/mm]

Also ich komme da nicht wirklich auf eine Idee.

Also der kgV ist ja die kleinste Zahl [mm] \in [/mm] N die durch alle Zahlen teilbar ist und paarweise teilerfremd bedeutet, dass der ggT aller Zahlen =1 ist und auch der ggT von beliebigen 2 Zahlen =1 ist. Soweit so gut, aber damit komme ich irgendwie nicht weit.
Wäre super, wenn mir jemand helfen könnte einen Ansatz zu finden.



        
Bezug
Beweis mit kgV: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Sa 03.12.2011
Autor: leduart

Hallo
zu 1. dass das ein gV ist ist klar, also nimm an es gäb ein kleineres und für das zum Widerspruch.
dasselbe für 2.
Gruss leduart

Bezug
                
Bezug
Beweis mit kgV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 03.12.2011
Autor: Catman

Also sage ich quasi:

|c|*kgV(a1,...,an) ist ein gV von kgV (c*a1,...,c*an)

Angenommen es gäbe ein kleineres Vielfaches von c*a1,...,c*an

dann.... ??

Also ich weiß jetzt nicht so recht wie ich das zum Widerspruch führen kann.

Bezug
                        
Bezug
Beweis mit kgV: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 So 04.12.2011
Autor: Schadowmaster

moin Catman,

Der klassische Widerspruch hier wäre:
Sei a ein anderes gemeinsames Vielfaches. [mm] $\cdots \Rightarrow \cdots$ [/mm] a ist durch dein gV teilbar.

Hattest du vielleicht bereits Primfaktorzerlegungen?
Wenn du die hattest, oder noch besser kgV über Primfaktoren definiert oder irgend wann mal bewiesen hast wäre das für diese Aufgabe sehr hilfreich.
Ansonsten überlege dir mal wie du das kgV von ein paar Zahlen ermitteln kannst, wenn du ihre Primfaktorzerlegungen kennst.


Alternativ könntest du es auch so versuchen:
Im kgV muss der Faktor |c| mindestens einmal auftauchen (wieso?).
Auf der anderen Seite reicht es, wenn er einmal auftaucht (wieso?).

Wenn du das beides zeigen kannst bist du auch fertig, denn dann hast du gezeigt, dass er genau einmal auftreten muss.

lg

Schadow

Bezug
                                
Bezug
Beweis mit kgV: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:49 So 04.12.2011
Autor: Catman


> moin Catman,
>  
> Der klassische Widerspruch hier wäre:
>  Sei a ein anderes gemeinsames Vielfaches. [mm]\cdots \Rightarrow \cdots[/mm]
> a ist durch dein gV teilbar.
>  
> Hattest du vielleicht bereits Primfaktorzerlegungen?
>  Wenn du die hattest, oder noch besser kgV über
> Primfaktoren definiert oder irgend wann mal bewiesen hast
> wäre das für diese Aufgabe sehr hilfreich.
>  Ansonsten überlege dir mal wie du das kgV von ein paar
> Zahlen ermitteln kannst, wenn du ihre Primfaktorzerlegungen
> kennst.
>  
>

Also kgV über Primfaktorzerlegung definiert haben wir noch nicht. Ich weiß, dass man jede Zahl als Primfaktorzerlegung ausdrücken kann und dass nur Zahlen mit den gleichen Primfaktoren als Teiler dieser Zahl in Frage kommen.

> Alternativ könntest du es auch so versuchen:
>  Im kgV muss der Faktor |c| mindestens einmal auftauchen
> (wieso?).

Also ich komm nicht wirklich drauf.
Aus der linken Seite folgt doch, wenn der kgV = x sei, dass c*a1|x ...und c*an|x gilt. Aus der rechten Seite folgt a1|x ...an|x. Oder?
Soweit ist das alles wodrauf ich komm. Nur den Zusammenhang find/seh ich nicht.

>  Auf der anderen Seite reicht es, wenn er einmal auftaucht
> (wieso?).
>  
> Wenn du das beides zeigen kannst bist du auch fertig, denn
> dann hast du gezeigt, dass er genau einmal auftreten muss.
>  
> lg
>  
> Schadow


Bezug
                                        
Bezug
Beweis mit kgV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 05.12.2011
Autor: Catman

nicht überfällig...

Bezug
                                        
Bezug
Beweis mit kgV: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 09.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]