matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis mit Unterräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis mit Unterräumen
Beweis mit Unterräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Unterräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mi 18.11.2009
Autor: p-bot

Aufgabe
[mm] U_1, U_2 [/mm] und [mm] U_3 [/mm] sind Unterräume eines Vektorraums V. Beweisen Sie.

[mm] (U_1 [/mm] + [mm] U_2) \cap U_3 [/mm] = [mm] U_1 [/mm] + [mm] (U_2\cup U_3) \gdw U_1 \subseteq U_3. [/mm]

Wie könnte man dies lösen?... Muss man 2 Bewise machen ...also von links nach rechts und umgekehrt? Ich denke schon. Habe leider keinen Ansatz. Reicht es aus die Glecihung links vom Äquivalenzpfeil zu beweisen, denn dies wäre ziemlich einfach.

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis mit Unterräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 18.11.2009
Autor: angela.h.b.


> [mm]U_1, U_2[/mm] und [mm]U_3[/mm] sind Unterräume eines Vektorraums V.
> Beweisen Sie.
>  
> [mm](U_1[/mm] + [mm]U_2) \cap U_3[/mm] = [mm]U_1[/mm] + [mm](U_2\cup U_3) \gdw U_1 \subseteq U_3.[/mm]
>  
> Wie könnte man dies lösen?... Muss man 2 Bewise machen
> ...also von links nach rechts und umgekehrt? Ich denke
> schon. Habe leider keinen Ansatz. Reicht es aus die
> Glecihung links vom Äquivalenzpfeil zu beweisen, denn dies
> wäre ziemlich einfach.

Hallo,

[willkommenmr].

Ja, Du mußt zwei Beweise machen:

1.  [mm](U_1[/mm] + [mm]U_2) \cap U_3[/mm] = [mm]U_1[/mm] + [mm](U_2\cup U_3) ==> U_1 \subseteq U_3.[/mm]

2. [mm] U_1 \subseteq U_3 [/mm] ==> [mm](U_1[/mm] + [mm]U_2) \cap U_3[/mm] = [mm]U_1[/mm] [mm] +(U_2\cup U_3) [/mm]


Die 2. dürfte sehr leicht sein.

Für die 1. mußt Du ja zeigen, daß unter der Voraussetzung [mm] (U_1[/mm] [/mm] + [mm]U_2) \cap U_3[/mm] = [mm]U_1[/mm] + [mm][mm] (U_2\cup U_3) [/mm]  gilt:

[mm] x\in U_1 [/mm] ==> [mm] x\in U_3. [/mm]


Nimm Dir also [mm] x\in U_1 [/mm] her  und überlege mithilfe der Voraussetzung, warum dieses x auch in [mm] U_3 [/mm] ist.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]