matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis mit Modulo keine Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis mit Modulo keine Lösung
Beweis mit Modulo keine Lösung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Modulo keine Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mo 19.01.2015
Autor: steinole

Aufgabe
Zeigen Sie, dass die Gleichung 3a² + 2 = b² keine Lösung (a, b) [mm] \in \IZ [/mm] x [mm] \IZ [/mm] besitzt.
Hinweis: Reduzieren Sie die Gleichung modulo einer geeigneten Zahl.

Hi,

diese Aufgabe bereitet mir Probleme.

Für die linke Seite weiß man, dass der Rest immer 2 ergibt. Soweit alles klar, die rechte Seite muss demzufolge, damit beide Seiten nicht gleich sein können, entweder kongruent zu 0 (mod 3) oder 1 (mod 3) sein. (richtig verstanden?)

Aber wie ist nun das weitere Vorgehen? Oder zielt der Ansatz schon in die falsche Richtung?
Wäre über Tipps erfreut.

MFG

        
Bezug
Beweis mit Modulo keine Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Mo 19.01.2015
Autor: statler

Hallo!

> Zeigen Sie, dass die Gleichung 3a² + 2 = b² keine Lösung
> (a, b) [mm]\in \IZ[/mm] x [mm]\IZ[/mm] besitzt.
>  Hinweis: Reduzieren Sie die Gleichung modulo einer
> geeigneten Zahl.

> Für die linke Seite weiß man, dass der Rest immer 2
> ergibt. Soweit alles klar, die rechte Seite muss
> demzufolge, damit beide Seiten nicht gleich sein können,
> entweder kongruent zu 0 (mod 3) oder 1 (mod 3) sein.
> (richtig verstanden?)
>
> Aber wie ist nun das weitere Vorgehen? Oder zielt der
> Ansatz schon in die falsche Richtung?
>  Wäre über Tipps erfreut.

Die geeignete Zahl hast du doch schon gefunden. Dann probier doch einfach mal die Quadrate mod 3 durch.

Gruß
Dieter

Bezug
                
Bezug
Beweis mit Modulo keine Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 19.01.2015
Autor: steinole

Es kommen tatsächlich entweder 0 (mod 3) oder 1 (mod 3) heraus.

1² = 1 [mm] \equiv [/mm] 1 (mod 3)
2² = 4 [mm] \equiv [/mm] 1 (mod 3)
3² = 9 [mm] \equiv [/mm] 0 (mod 3)
4² = 16 [mm] \equiv [/mm] 1 (mod 3)
5² = 25 [mm] \equiv [/mm] 1 (mod 3)
...

Aber wie lässt es sich allgemein für alle Quadratzahlen zeigen?
Bzw. warum kann es keine Quadratzahl modulo 3 mit Rest 2 geben?

Bezug
                        
Bezug
Beweis mit Modulo keine Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Mo 19.01.2015
Autor: leduart

Hallo
b=0mod3 oder b=1mod3 oder b=2 mod3   daraus folgt für [mm] b^2 [/mm] mod3 ?
Gruß leduart

Bezug
                                
Bezug
Beweis mit Modulo keine Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mo 19.01.2015
Autor: steinole


> Hallo
>  b=0mod3 oder b=1mod3 oder b=2 mod3   daraus folgt für [mm]b^2[/mm]
> mod3 ?
>  Gruß leduart

Ah,

b = 0 (mod 3):
0 (mod 3) * 0 (mod 3) [mm] \equiv [/mm] 0 (mod 3)

b = 1 (mod 3):
1 (mod 3) * 1 (mod 3) [mm] \equiv [/mm] 1 (mod 3)

b = 2 (mod 3):
2 (mod 3) * 2 (mod 3) [mm] \equiv [/mm] 4 (mod 3) [mm] \equiv [/mm] 1 (mod 3)

??

Danke euch beiden.

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]