matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis mit Moduln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Beweis mit Moduln
Beweis mit Moduln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Moduln: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:43 Fr 18.06.2004
Autor: Dana22

Kann mir jemand bei dieser Aufgabe behilflich sein? Ich hab absolut keine Ahnung von Moduln. Kann man dies ähnlich handhaben wie Räume oder Mengen?

Sei M ein R-Modul (R kommutativer Ring mit 1) mit M = [mm] \summe_{i=1}^{n} M_i [/mm], wobei [mm] M_i [/mm] Untermoduln von M sind und [mm] (M_1[/mm] [mm] \cap [/mm][mm] M_2)=0, (M_1+M_2)[/mm] [mm] \cap [/mm][mm] M_3=0, [/mm] ... , [mm] (M_1+ [/mm] ... + [mm] M_n_-_1)[/mm] [mm] \cap [/mm][mm] (M_n)=0. [/mm]
Zeige: M = [mm] \oplus_{i=1}^{n} M_i [/mm] .


        
Bezug
Beweis mit Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Fr 18.06.2004
Autor: Julius

Hallo Dana!

Wie habt ihr denn die direkte Summe

[mm]\bigoplus\limits_{i=1}^{n} M_i[/mm]

von $R$-Untermoduln definiert?

Denn das, was ihr zeigen sollte, könnte glatt die Definition sein. Da sie es aber anscheinend bei euch nicht ist, muss ich ja wissen, wie ihr die direkte Summe definiert habt. Dann weiß ich, was ich voraussetzen kann.

Liebe Grüße
Julius



Bezug
                
Bezug
Beweis mit Moduln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Fr 18.06.2004
Autor: Dana22

Siehste, und das ist mein Problem. Das war bei uns nur ein Satz. Und eigentlich ist diese Aufgabe ja ganz klar. Und wenn etwas für mich klar ist, hab ich Probleme, das zu beweisen (weil's halt eigentlich klar ist)!!!

Bezug
                        
Bezug
Beweis mit Moduln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Fr 18.06.2004
Autor: Julius

Hallo!

Halt nochmal! Aber wie habt ihr denn jetzt die direkte Summe von Untermoduln definiert?

Diese Frage hast du mir noch nicht beantwortet.

Liebe Grüße
Julius

Bezug
                                
Bezug
Beweis mit Moduln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Sa 19.06.2004
Autor: Dana22

Ich hab das mit einem Induktionsbeweis versucht zu machen. Ich hab's geschafft zu laden, damit ich es nicht abtippen musste. :-) Und kannst du mir jetzt nitte noch sagen, ob und wo ich noch was ändern muss???

Bezug
                                        
Bezug
Beweis mit Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Mo 21.06.2004
Autor: Julius

Liebe Dana!

Da du mir immer noch nicht gesagt hast, wie ihr die direkte Summe endlich vieler Untermoduln definiert habt, kann ich dir natürlich auch nicht sagen, ob dein Beweis richtig ist. Auf Grund deines Beweises habe ich aber eine Ahnung davon, wie ihr es definiert habt (nämlich rekursiv). In diesem Fall ist dein Beweis richtig, sehr schön [huepf].

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]