matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis mit Körperaxiomen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Beweis mit Körperaxiomen
Beweis mit Körperaxiomen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Körperaxiomen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 02.05.2012
Autor: King-LA-Gold

Aufgabe
Seien a und b Elemente eines Körpers. Beweisen Sie mit Hilfe der Körperaxiome die Aussage:
-(a+b) = (-a) + (-b)

Stimmt mein Beweis so???

-(a+b) = (-1)(a+b) = (-1)a + (-1)b = (-a) + (-b)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis mit Körperaxiomen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 02.05.2012
Autor: Marcel

Hallo,

> Seien a und b Elemente eines Körpers. Beweisen Sie mit
> Hilfe der Körperaxiome die Aussage:
>  -(a+b) = (-a) + (-b)
>  Stimmt mein Beweis so???
>  
> -(a+b) = (-1)(a+b) = (-1)a + (-1)b = (-a) + (-b)

wichtig dabei:
[mm] $$1=1_K$$ [/mm]
ist das neutrale Element bzgl. der Multiplikation im Körper [mm] $K\,.$ [/mm] (Und [mm] $-1_K$ [/mm] ist das Inverse von [mm] $1_K$ [/mm] bzgl. der Addition.)

Habt ihr denn bewiesen, dass
[mm] $$-r=(-1_K)*r$$ [/mm]
für alle $r [mm] \in [/mm] K$ gilt? Denn das brauchst Du ja bei obigem Beweis.

Und um [mm] $-r=(-1_K)*r$ [/mm] einzusehen:
[mm] $$r+(-1_K)*r=1_K*r+(-1_K)*r=(1_K+(-1_K))*r=0_K*r=0_K\,,$$ [/mm]
d.h. die letzte Gleichheit in dieser Rechnung muss auch schon bekannt sein, sowie, dass das add. Inverse im Körper eindeutig bestimmt ist.

Also mit diesem Vorwissen, und wenn Deine Rechnung nur im Körper [mm] $K\,$ [/mm] abläuft und Du dann dort die Distributitvität nutzt, dann wäre das okay.

Ich würde daher den Beweis einfacher aufziehen:
Wie gerade erwähnt (und das habt ihr hoffentlich bewiesen), ist das additiv Inverse (=additiv Rechts- und auch additiv Linksinverses) in einem Körper eindeutig.
Per Definitionem ist [mm] $-(a+b)\,$ [/mm] das additiv Inverse zu $(a+b) [mm] \in K\,.$ [/mm]  Jetzt rechne einfach nach, dass auch
[mm] $$-a-b+(a+b)=0_K$$ [/mm]
gilt.

P.S.
Aus Gründen, die Dir später vielleicht klarer werden, würde ich hier sogar schon vorschlagen
$$-(a+b)=-b+(-a)=-b-a$$
zu schreiben...
Macht natürlich im Körper keinen Unterschied...

P.P.S.
Hier eigentlich nicht notwendig (aus gewissen Gründen), aber Du kannst natürlich auch zusätzlich nachrechnen (oder kurz begründen), dass zudem auch
[mm] $$(a+b)+(-a-b)=0_K$$ [/mm]
gilt.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]