matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis mit Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Beweis mit Induktion
Beweis mit Induktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:37 Mo 19.11.2012
Autor: missjanine

Aufgabe
Beweisen Sie, dass a eine beliebige positive reelle Zahl ist und [mm] n\in\IN\cup{0}. [/mm] Dann gilt [mm] a^n=1 [/mm]

Ich will dies nun mittels Induktion beweisen. Ist das so möglich?
Für n=0 ist bekannt, dass [mm] a^0=1. [/mm] Beweis des Induktionsanfangs
Im Folgenden nehme ich an, dass [mm] a^n=a^{n-1}=1 [/mm] gilt und zeige, dass [mm] a^{n+1}=1 [/mm] folgt. Also schreibe ich:
[mm] a^{n+1}=a^n*a=\bruch{a^n*a^n}{a^{n-1}}= [/mm] (wegen Induktionsvoraussetzung) [mm] \bruch{1*1}{1}=1 [/mm]

Somit wäre mittels Induktions die Aussage für jede natürliche Zahl n gezeigt.

        
Bezug
Beweis mit Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mo 19.11.2012
Autor: Axiom96

Hallo,

> Beweisen Sie, dass a eine beliebige positive reelle Zahl
> ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]
>  Ich will dies nun mittels Induktion beweisen. Ist das so
> möglich?
>  Für n=0 ist bekannt, dass [mm]a^0=1.[/mm] Beweis des
> Induktionsanfangs
>  Im Folgenden nehme ich an, dass [mm]a^n=a^{n-1}=1[/mm]

Dann musst du den Induktionsanfang für zwei kleinste n durchführen.

> gilt und
> zeige, dass [mm]a^{n+1}=1[/mm] folgt. Also schreibe ich:
>  [mm]a^{n+1}=a^n*a=\bruch{a^n*a^n}{a^{n-1}}=[/mm] (wegen
> Induktionsvoraussetzung) [mm]\bruch{1*1}{1}=1[/mm]
>  
> Somit wäre mittels Induktions die Aussage für jede
> natürliche Zahl n gezeigt.

Viele Grüße

Bezug
        
Bezug
Beweis mit Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Mo 19.11.2012
Autor: angela.h.b.


> Beweisen Sie, dass a eine beliebige positive reelle Zahl
> ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]

Hallo,

wie lautet den die komplette Aufgabe im Originalwortlaut?

Das da oben ist etwas strange.

LG Angela


Bezug
        
Bezug
Beweis mit Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Mo 19.11.2012
Autor: Helbig


> Beweisen Sie, dass a eine beliebige positive reelle Zahl
> ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]
>  Ich will dies nun mittels Induktion beweisen. Ist das so
> möglich?
>  Für n=0 ist bekannt, dass [mm]a^0=1.[/mm] Beweis des
> Induktionsanfangs
>  Im Folgenden nehme ich an, dass [mm]a^n=a^{n-1}=1[/mm] gilt und
> zeige, dass [mm]a^{n+1}=1[/mm] folgt. Also schreibe ich:
>  [mm]a^{n+1}=a^n*a=\bruch{a^n*a^n}{a^{n-1}}=[/mm] (wegen
> Induktionsvoraussetzung) [mm]\bruch{1*1}{1}=1[/mm]
>  
> Somit wäre mittels Induktions die Aussage für jede
> natürliche Zahl n gezeigt.

Nein. Der Induktionsschritt muß für jedes [mm] $n\in \IN$ [/mm] gezeigt werden, also auch für $n=0$. In dem Fall wird aber [mm] $a^{n-1} [/mm] = 1$ nicht von der Induktionsvoraussetzung abgedeckt. Wenn Du also noch den Induktionsschritt [mm] $0\to [/mm] 1$, also [mm] $a^1=1$, [/mm] zeigst, ist Dein Beweis perfekt. Also bitte ...

Die Induktionsvoraussetzung wird hier übrigens in einer etwas verallgemeinerten, aber dennoch gültigen Form gebraucht, und zwar: Die Aussage A(k) stimmt für alle [mm] $k\in \IN, [/mm] k< n+1$.

EDIT: Korrigiert nach Hinweis von Axiom96. Danke!

Gruß,
Wolfgang


Bezug
                
Bezug
Beweis mit Induktion: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 20:41 Mo 19.11.2012
Autor: Axiom96


> > Beweisen Sie, dass a eine beliebige positive reelle Zahl
> > ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]
>  >  Ich will dies nun mittels Induktion beweisen. Ist das
> so
> > möglich?
>  >  Für n=0 ist bekannt, dass [mm]a^0=1.[/mm] Beweis des
> > Induktionsanfangs
>  >  Im Folgenden nehme ich an, dass [mm]a^n=a^{n-1}=1[/mm] gilt und
> > zeige, dass [mm]a^{n+1}=1[/mm] folgt. Also schreibe ich:
>  >  [mm]a^{n+1}=a^n*a=\bruch{a^n*a^n}{a^{n-1}}=[/mm] (wegen
> > Induktionsvoraussetzung) [mm]\bruch{1*1}{1}=1[/mm]
>  >  
> > Somit wäre mittels Induktions die Aussage für jede
> > natürliche Zahl n gezeigt.
>
> Nein. Der Induktionsschritt muß für jedes [mm]n\in \IN[/mm]
> gezeigt werden, also auch für [mm]n=0[/mm]. In dem Fall wird aber
> [mm]a^{n-1} = 1[/mm] nicht von der Induktionsvoraussetzung
> abgedeckt. Wenn Du also noch den Induktionsschritt [mm]0\to 1[/mm],
> also [mm]a^1=1[/mm], zeigst, ist Dein Beweis perfekt. Also bitte
> ...
>  
> Die Induktionsvoraussetzung wird hier übrigens in einer
> etwas verallgemeinerten, aber dennoch gültigen Form
> gebraucht, und zwar: Die Aussage A(n) stimmt für alle [mm]n\in \IN, n< n+1[/mm].

Ich glaube, es müsste lauten: Die Aussage A(n) gilt für alle [mm] n\in\IN, n<\bar{n}\implies(?) A(\bar{n}) [/mm] heißen, oder? Denn es gibt nur ein n<n+1, nämlich gerade $n$. Aber ich kann mich täuschen...

> Gruß,
>  Wolfgang
>  

Viele Grüße

Bezug
                        
Bezug
Beweis mit Induktion: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 21:16 Mo 19.11.2012
Autor: Helbig

Hallo Axiom96,

> Ich glaube, es müsste lauten: Die Aussage A(n) gilt für
> alle [mm]n\in\IN, n<\bar{n}\implies(?) A(\bar{n})[/mm] heißen,
> oder? Denn es gibt nur ein n<n+1, nämlich gerade [mm]n[/mm]. Aber
> ich kann mich täuschen...

Nein, Du täuschst Dich nicht. Ich hab's korrigiert. Danke!

Gruß,
Wolfgang


Bezug
        
Bezug
Beweis mit Induktion: Wundere mich
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Di 20.11.2012
Autor: angela.h.b.

Hallo,

ich wundere mich über zweierlei:

> Beweisen Sie, dass a eine beliebige positive reelle Zahl
> ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]

1.
Warum regt sich eigentlich außer mir keine über die gepostete Aufgabenstellung auf?
"Beweise, daß a eine beliebige positive reelle Zahl ist"... Tssss...

>  Ich will dies nun mittels Induktion beweisen.
> [...]
> Somit wäre mittels Induktions die Aussage für jede
> natürliche Zahl n gezeigt.

2.
Warum wunderst Du Dich nicht darüber, daß Du die Aussage
"Für jede reelle positive Zahl und jedes [mm] n\in \IN [/mm] ist [mm] a^n=1 [/mm] "
beweisen konntest?
Du hast immerhin gerade gezeigt, daß [mm] 13^{4711}=1... [/mm]
(Einen Tip hast Du ja bereits bekommen.)

LG Angela


Bezug
                
Bezug
Beweis mit Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Di 20.11.2012
Autor: fred97


> Hallo,
>  
> ich wundere mich über zweierlei:
>  
> > Beweisen Sie, dass a eine beliebige positive reelle Zahl
> > ist und [mm]n\in\IN\cup{0}.[/mm] Dann gilt [mm]a^n=1[/mm]
>  
> 1.
> Warum regt sich eigentlich außer mir keine über die
> gepostete Aufgabenstellung auf?

Hallo Angela,

ich kann Dich beruhigen. Ich rege mich auch auf.

Ich habe die "Aufgabe" aber erst vor 2 Minuten zum ersten mal gesehen.

Gruß FRED

>  "Beweise, daß a eine beliebige positive reelle Zahl
> ist"... Tssss...
>  
> >  Ich will dies nun mittels Induktion beweisen.

>  > [...]

>  > Somit wäre mittels Induktions die Aussage für jede

> > natürliche Zahl n gezeigt.
>
> 2.
>  Warum wunderst Du Dich nicht darüber, daß Du die Aussage
> "Für jede reelle positive Zahl und jedes [mm]n\in \IN[/mm] ist
> [mm]a^n=1[/mm] "
>  beweisen konntest?
>  Du hast immerhin gerade gezeigt, daß [mm]13^{4711}=1...[/mm]
>  (Einen Tip hast Du ja bereits bekommen.)
>  
> LG Angela
>  


Bezug
                        
Bezug
Beweis mit Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Di 20.11.2012
Autor: angela.h.b.


> Ich rege mich auch auf.

Hallo Fred,

das ist prima!

Dann bin ich jetzt wieder ganz ruhig.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]