matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis lin Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis lin Abhängigkeit
Beweis lin Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis lin Abhängigkeit: Beweis vollständig?
Status: (Frage) beantwortet Status 
Datum: 10:36 Do 09.01.2014
Autor: Syny

Aufgabe
Und zwar soll ich beweisen, dass innerhalb eines Vektorraums mit 2 oder mehr Vektoren sobald sich einer von diesen als Linearkombination der anderen darstellen lässt eine lineare Abhängigkeit besteht.

Ich habe mir das so gedacht. Eine lineare Abhängigkeit besteht ja wenn ich eine Linearkombination aller Vektoren finde die nicht Trivial ist also mindestens ein skalar ungleich 0 ist.
Wenn ich nun weiß es lässt sich einer der Vektoren als Linearkombination darstellen habe ich ja eine Gleichung wie z.B. :
[x,y,z]=a*[x1,y1,z1]+b*[x2,y2,z2] und wenn ich diese dann umstelle habe ich ja automatisch  a*[x1,y1,z1]+b*[x2,y2,z2] - 1*[x,y,z]=0 und damit wäre ja schon durch die -1 eine nicht triviale Lösung entstanden die den Nullvektor erzeugt. Stimmt das so wie ich das gedacht habe und reicht dies als vollständiger Beweis ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Und ich könnte schwören das dies nicht mein erster Post ist :)

        
Bezug
Beweis lin Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Do 09.01.2014
Autor: reverend

Hallo Syny,

> Und zwar soll ich beweisen, dass innerhalb eines
> Vektorraums mit 2 oder mehr Vektoren sobald sich einer von
> diesen als Linearkombination der anderen darstellen lässt
> eine lineare Abhängigkeit besteht.

Seit wann fangen Aufgaben mit "und zwar" an?

>  Ich habe mir das so gedacht. Eine lineare Abhängigkeit
> besteht ja wenn ich eine Linearkombination aller Vektoren
> finde die nicht Trivial ist also mindestens ein skalar
> ungleich 0 ist.

Ist das Eure Definition von linearer Abhängigkeit? Dann wäre nichts mehr zu beweisen und Du bist direkt fertig.

> Wenn ich nun weiß es lässt sich einer der Vektoren als
> Linearkombination darstellen habe ich ja eine Gleichung wie
> z.B. :
>  [x,y,z]=a*[x1,y1,z1]+b*[x2,y2,z2] und wenn ich diese dann
> umstelle habe ich ja automatisch  a*[x1,y1,z1]+b*[x2,y2,z2]
> - 1*[x,y,z]=0 und damit wäre ja schon durch die -1 eine
> nicht triviale Lösung entstanden die den Nullvektor
> erzeugt. Stimmt das so wie ich das gedacht habe und reicht
> dies als vollständiger Beweis ?

Das hängt von Eurer Definition linearer Abhängigkeit ab. Bei allen, die ich kenne, ist die Aufgabe trivial.

>  Und ich könnte schwören das dies nicht mein erster Post
> ist :)

Stimmt. Es ist Dein vierter.

Grüße
reverend


Bezug
                
Bezug
Beweis lin Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 Do 09.01.2014
Autor: Syny

Danke für die schnelle Antwort. Die Aufgabe an sich ist die Definition allerdings  mit dem Zusatz "Beweisen Sie" , deswegen dachte ich mit einem allgemeinem Beispiel wäre dies dann evntl. getan. Mir viel da jetzt keine andere Möglichkeit ein dies umzusetzten.


> Seit wann fangen Aufgaben mit "und zwar" an?

Sry werde sie nächstes mal genau zitieren :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]