matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Beweis: irrationale Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Beweis: irrationale Zahl
Beweis: irrationale Zahl < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: irrationale Zahl: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 11.11.2006
Autor: LULU555

Aufgabe
zu zeigen:  [mm] \wurzel{2} [/mm] + [mm] \wurzel{3} [/mm] ist eine irrationale zahl.
dabei soll angenommen werden x² = a

Ich habe diese Frage in keinem weiteren Forum gestellt.

Leider hab ich keinen Ansatz für diese Aufgabe vielleicht könnte mir jemand dabei helfen?

Danke

        
Bezug
Beweis: irrationale Zahl: Mit Kontraposition
Status: (Antwort) fertig Status 
Datum: 14:55 Sa 11.11.2006
Autor: moudi

Hallo Lulu

Sei [mm] $a=\sqrt2+\sqrt [/mm] 3$. Argumentiere so:
Ist a rational, so auch [mm] $a^2=(\sqrt2+\sqrt3)^2=\dots$. [/mm] etc.

So kannst du folgern, ist $a$ rational, so muss auch [mm] $\sqrt [/mm] 6$ rational sein, was offensichtlich falsch ist. Mit der Kontraposition erhälst du das gewünschte.

mfG Moudi

Bezug
                
Bezug
Beweis: irrationale Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Sa 11.11.2006
Autor: LULU555

Also mit Widerspruchsbeweis, wenn ich das richtig verstanden habe...

noch eine kleine Frage, wie kommst du auf [mm] \wurzel{6} [/mm] ?

Danke

Bezug
                        
Bezug
Beweis: irrationale Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 11.11.2006
Autor: DaMenge

Hi,

naja wegen der binomischen Formel : [mm] $(\wurzel{2}+\wurzel{3})^2=2+2*\wurzel{2}*\wurzel{3}+3=5+2*\wurzel{6}$ [/mm]

wenn dies rational sein soll, muss auch [mm] $\wurzel{6}$ [/mm] rational sein...
viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]