matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeweis im Integritätsring
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Beweis im Integritätsring
Beweis im Integritätsring < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im Integritätsring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mi 29.11.2006
Autor: Milka_Kuh

Aufgabe
Sei R ein Integritätsring mit |R| < [mm] \infty. [/mm]
Zu zeigen:
Für jedes r [mm] \in [/mm] R-{0} eixstiert eine natürliche Zahl n [mm] \ge [/mm] 1 mit [mm] r^{n}=1. [/mm]
Folgere daraus, dass R ein Körper ist.

Hallo,

ich habe die Aufgabe gelöst. Aber am Ende komme ich nicht weiter, weil mir unklar ist, ob in R-{0} alle Nicht-Null-Elemente invertierbar sind. Ich weiß aus der Vorlesung, dass [mm] R^{x} [/mm] im Allgemeinen ungleich R-{0} ist, sondern nur eine Teilmenge. Und in [mm] R^{x} [/mm] sind ja alle Nicht-Null-Elemente invertierbar...
Zur Aufgabe:
R ist Integritätsring, also ist R kommutativer Ring (Vereinbarung vom Prof.).
Jetzt habe ich folgendes gemacht:
[mm] \produkt_{s \in R-{0}}^{}s [/mm] = (!) [mm] \produkt_{s \in R-{0}}^{}rs=rs_{1}*rs_{2}*...*rs_{n}=r^{n}s_{1}*...*s_{n}= [/mm]
[mm] r^{n}\produkt_{r \in R-{0}}^{}s [/mm]
Erklärung zu (!):  R [mm] \to [/mm] R ist bijektiv, s [mm] \mapsto [/mm] rs und rs [mm] \mapsto r^{-1}rs=s \in [/mm] R durch Linksmultiplikation von [mm] r^{-1}. [/mm]
Also ist [mm] \produkt_{s \in R-{0}}^{}s=r^{n}\produkt_{s \in R-{0}}^{}s [/mm]
Definiere nun [mm] \produkt_{}^{}s [/mm] =: s'
Wenn ich jetzt von Rechts mit s'^{-1} multipliziere, dann erhalte ich genau [mm] r^{n}=1. [/mm] Aber das darf ich ja nur, wenn R ein Körper ist. Weil dann existiert ja für jedes Element außer der Null das Inverse. Ist so die Folgerung gemeint? Das ist genau ist mein Problem mit R-{0} (siehe oben).
Danke für die Hilfe.
Milka

        
Bezug
Beweis im Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Do 30.11.2006
Autor: felixf

Hallo Anna,

> Sei R ein Integritätsring mit |R| < [mm]\infty.[/mm]
>  Zu zeigen:
>  Für jedes r [mm]\in[/mm] R-{0} eixstiert eine natürliche Zahl n [mm]\ge[/mm]
> 1 mit [mm]r^{n}=1.[/mm]
>  Folgere daraus, dass R ein Körper ist.
>  Hallo,
>  
> ich habe die Aufgabe gelöst. Aber am Ende komme ich nicht
> weiter, weil mir unklar ist, ob in R-{0} alle
> Nicht-Null-Elemente invertierbar sind. Ich weiß aus der
> Vorlesung, dass [mm]R^{x}[/mm] im Allgemeinen ungleich R-{0} ist,
> sondern nur eine Teilmenge. Und in [mm]R^{x}[/mm] sind ja alle
> Nicht-Null-Elemente invertierbar...

ich glaube, du denkst grad viel zu kompliziert :) Wenn du zu jedem $r [mm] \in [/mm] R [mm] \setminus \{ 0 \}$ [/mm] ein $n [mm] \ge [/mm] 1$ hast mit [mm] $r^n [/mm] = 1$, dann ist ja $r [mm] \cdot r^{n-1} [/mm] = 1 = [mm] r^{n-1} \cdot [/mm] r$, und es ist [mm] $r^{n-1} \in [/mm] R$ (da $n - 1 [mm] \ge [/mm] 0$). Also ist $r$ somit in [mm] $R^x$. [/mm]

LG Felix


Bezug
                
Bezug
Beweis im Integritätsring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 30.11.2006
Autor: Milka_Kuh

Hallo,

danke für deine Antwort. Wenn jetzt r [mm] \in R^{x} [/mm] ist, dann gilt jetzt doch [mm] R^{x}=R-{ 0 } [/mm] , oder? Weil dann ist R ein Körper.

Lg, Milka

Bezug
                        
Bezug
Beweis im Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 30.11.2006
Autor: felixf

Hallo Milka,

> danke für deine Antwort. Wenn jetzt r [mm]\in R^{x}[/mm] ist, dann
> gilt jetzt doch [mm]R^{x}=R-{ 0 }[/mm] , oder? Weil dann ist R ein
> Körper.

ja. Da $r [mm] \in [/mm] R [mm] \setminus \{ 0 \}$ [/mm] beliebig war, folgt somit [mm] $R^x [/mm] = R [mm] \setminus \{ 0 \}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]