matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis für Ungleichheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Beweis für Ungleichheit
Beweis für Ungleichheit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Ungleichheit: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:19 Mi 26.01.2005
Autor: Iceman

Hallo euch allen,

ich habe einige Aufgaben von folgendem Typ und würde gerne wissen wollen wie man sowas angeht und rechnet.

Zeige, dass für alle x [mm] \in \IR [/mm] folgende Ungleichheit gilt, und Gleichheit nur für x=0 gilt: [mm] e^x \ge [/mm] 1+x

Vielen Dank schon mal fürs Lesen!

        
Bezug
Beweis für Ungleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Mi 26.01.2005
Autor: Marcel

Hallo Iceman!

> Hallo euch allen,
>  
> ich habe einige Aufgaben von folgendem Typ und würde gerne
> wissen wollen wie man sowas angeht und rechnet.
>  
> Zeige, dass für alle x [mm]\in \IR[/mm] folgende Ungleichheit gilt,
> und Gleichheit nur für x=0 gilt: [mm]e^x \ge[/mm] 1+x

Das finde ich so ohne weiteres schwer zu beantworten (schwer, weil ich eure Vorlesung nicht kenne). Wir hatten die Aussage [mm]e^x\ge1+x[/mm] [mm]\forall x \in \IR[/mm] (in einem Einzeiler) so bewiesen:
[]http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf, Satz 7.7, S.67 (skriptinterne Zählung)
(Dort ist aber noch nicht bewiesen, dass Gleichheit genau im Falle $x=0$ gilt!)

Die Schwierigkeit ist, dass ihr evtl. ganz andere Hilfsmittel zur Verfügung habt:
Dazu würde mich interessieren:
Wie habt ihr die Exponentialfkt. definiert? (Über eine: Reihe? Folge?)
Habt ihr schon Ableitungen behandelt? Schonmal was über konvexe Funktionen gehört?

Die strenge Konvexität der Exp.-Fkt. könnte jedenfalls hilfreich sein (und das Wissen: [mm] $(\exp(0)=)\;e^0=1$)... [/mm]

Viele Grüße,
Marcel

Bezug
                
Bezug
Beweis für Ungleichheit: Definition
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 27.01.2005
Autor: Iceman

Von Konvexität habe ich noch nichts gehört. Ableitungen haben wir noch nicht so gemacht.

Die Exponentialfunktion haben wir so definiert:

exp(x): K [mm] \to [/mm] K, x [mm] \mapsto [/mm] exp(x)= [mm] \sum_{n=0}^{ \infty} \bruch{x^n}{n!} = 1+ \sum_{n=1}^{ \infty} \bruch{x^n}{n!} [/mm]

Dann haben wir noch dazu geschrieben (aufgrund eines vorherigen Beispiels) dass
[mm] \limes_{n\rightarrow\infty} \wurzel[n]{n!} [/mm] =  [mm] \infty [/mm]
Also gilt auch
[mm] \limes_{n\rightarrow\infty} \wurzel[n] \bruch{{\left| x^n \right|}}{n!} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{{\left| x \right|}}{{\wurzel[n]{n!}} [/mm] =0


Deshalb konvergiert die Reihe [mm] ( \sum \bruch{x^n}{n!})_n \in\IN_0 [/mm] absolut.


Danke dir für deine Antwort!!

Bezug
                        
Bezug
Beweis für Ungleichheit: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 12:52 So 30.01.2005
Autor: AdvDiaboli

Hallo Iceman,

Ich glaube die Lösung die von dir erwartet wird läuft darauf hinaus, dass du [mm] e^x-1-x [/mm] betrachtest (schreib [mm] e^x [/mm] in der von dir benutzten Reihendarstellung) und dann solltest du sehen, dass dieser Term für x [mm] \neq [/mm] 0 positiv ist.

viele Grüße
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]