matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis erbringen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Beweis erbringen
Beweis erbringen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis erbringen: Tipp,
Status: (Frage) beantwortet Status 
Datum: 01:21 Sa 10.01.2015
Autor: Michi4590

Aufgabe
Beweisen Sie dass gilt:

b|a  [mm] \Rightarrow [/mm] b|a*c

Hey Leute,

die Aufgabenstellung steht ja schon oben. Ich bin jetzt auch schon ziemlich weit gekommen, aber am Schluss weiß ich nicht mehr weiter.

a = k*b  [mm] \Rightarrow [/mm]  a*c = k'*b

In der rechten Seite für a = k*b eigesetzt;

k*b*c = k'*b


Nur wie kann ich jetzt weitermachen?

Danke für Eure Antworten.  

        
Bezug
Beweis erbringen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:30 Sa 10.01.2015
Autor: andyv

Hallo,


>  Hey Leute,
>  
> die Aufgabenstellung steht ja schon oben. Ich bin jetzt
> auch schon ziemlich weit gekommen, aber am Schluss weiß
> ich nicht mehr weiter.
>  
> a = k*b  [mm]\Rightarrow[/mm]  a*c = k'*b

die Implikation ist sicherlich richtig, wenn [mm] $k':=kc\in \mathbb [/mm] Z$. (Ich nehme mal an, dass a,b und c ganze Zahlen sein sollen.)

Und das war's dann auch schon.

>  
> In der rechten Seite für a = k*b eigesetzt;
>  
> k*b*c = k'*b
>
>
> Nur wie kann ich jetzt weitermachen?
>  
> Danke für Eure Antworten.    

Liebe Grüße


Bezug
                
Bezug
Beweis erbringen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:47 Sa 10.01.2015
Autor: Michi4590

Vielen Dank für deine Antwort (zu dieser späten Stunde :-)

a,b, und c sind Element der ganzen Zahlen, das stimmt.

Eine Aufgabe hätte ich noch, nur zur Sicherheit:

b|a Rightarrow b|c [mm] \Rightarrow [/mm] b|(k*a+l*c)     k,l [mm] \in \IZ [/mm]

a = k'*b    
c = k''*b
k*a+l*c = k'''*b
Resultat:
k*k'+b + l*c = k'''*b


Wäre dies richtig?

Bezug
                        
Bezug
Beweis erbringen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:07 Sa 10.01.2015
Autor: Teufel

Hi!

Es ist immer etwas unsauber aufgeschrieben, auch bei der ersten Aufgabe.

Nochmal zur ersten, etwas sauberer ausgeschrieben:

Gegeben: b|a, d.h.  es ex. ein [mm] $k\in\IZ$ [/mm] mit $a=kb$.
Zu zeigen: b|ca, d.h. es ex. ein [mm] $k'\in\IZ$ [/mm] mit $ca=k'b$.
Beweis: Mit $k':=ck$ gilt $k'b=ckb=ca$.

Das ist auch vollständiger als einfach zu schreiben, dass du irgendwo irgendetwas einsetzt, aber dann nicht mehr auf die eigentliche Aufgabe zurück kommst. Die Rechnung aber ansich stimmt, nur das Paket drum rum könnte etwas netter sein. ;)

Bei der zweiten Aufgabe analog. Du hast alles eingesetzt und das ist komplett richtig, auch wenn du einige Tippfehler drinnen hast. Aber komme am Ende wieder dahin zurück, was du eigentlich zeigen sollst, nämlich dass es ein [mm] $k'''\in\IZ$ [/mm] gibt mit bladibla, nämlich $k''':=kk'+lk''$.

Bezug
                                
Bezug
Beweis erbringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:13 Sa 10.01.2015
Autor: Michi4590

Dankeschön, ich werde das in der Klausur dann so aufschreiben wie du es mir geraten hast ;-)

Bezug
                                        
Bezug
Beweis erbringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:29 Sa 10.01.2015
Autor: Teufel

Ich merke gerade dass sich das vielleicht etwas böse liest, was ich geschrieben habe, war aber nicht so gemeint. :D Der Weg ist aber jeweils komplett richtig.

Viel Glück bei der Klausur!

Bezug
                                                
Bezug
Beweis erbringen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:41 Sa 10.01.2015
Autor: Michi4590

Finde nicht, dass das bösartig geschrieben ist.

Eine Sache ist mir gerade noch aufgefallen, und zwar hast du zweimal := im Text. Ist das ein Tippfehler (sollte = heißen)?

Bezug
                                                        
Bezug
Beweis erbringen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:17 Sa 10.01.2015
Autor: Teufel

Ok :)

Das := heißt, dass man die Variable auf der linken Seite mit dem Wert auf der rechten Seite definiert. Das kann man unter anderem in dieser Aufgabe machen, wenn es darum geht z.B. das k''' zu finden. Du kannst das aber auch weglassen und einfach nur = schreiben, es macht keinen großen Unterschied.

Ein anderer Anwendungsfall ist aber z.B., wenn du in einer längeren Rechnung mal irgendeinen komplizierten Ausdruck ersetzen möchtest.

z.B. löse [mm] e^{2sin(x)}+2*e^{sin(x)}-1=0. [/mm] Dort kannst du dann so was machen wir "Definiere z:=e^sin(x) (oder auch z(x):=e^sin(x) wenn du das x noch mitschleppen möchtest), dann hat man die Gleichung [mm] z^2+2*z-1=0 [/mm] etc. etc." Durch das := wird auch suggeriert, dass das keine Gleichung ist, an der du etwas umstellen möchtest oder so, sondern nur, dass du [mm] e^{sin(x)} [/mm] jetzt anders nennen möchtest, weil man dann mehr sieht und weil das alles etwas kürzer macht.

Aber wie gesagt, ist eigentlich nicht so wichtig. Du kannst dir, wenn du das siehst, stets ein = dahin denken.

Bezug
                                                                
Bezug
Beweis erbringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:51 Sa 10.01.2015
Autor: Michi4590

Aufgabe
Beweisen Sie, dass eine Zahl durch 9 teilbar ist, wenn ihre Quersumme durch 9 teilbar ist.




Hey Leute,

ihr habt mir zu diesem Thema schon einmal eine kurze Hilfestellung gegeben. Nur zur Sicherheit wollte ich fragen, ob die nachfolgenden Zeilen für den Beweis der Quersummenregel ausreichend sind?

10 [mm] \equiv [/mm] (1) mod 9
[mm] 10^2 \equiv (1)^2 [/mm] mod9
[mm] 10^n \equiv (1)^n [/mm] mod9


[mm] x_0 [/mm] + [mm] 10x_1 [/mm] + [mm] 10^2x_2 [/mm] + ... + [mm] 10^nx_n \equiv x_1 [/mm] + [mm] x_2+...+x_n [/mm] mod 9


Vielen Dank :-)


Bezug
                                                                        
Bezug
Beweis erbringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:51 Sa 10.01.2015
Autor: Michi4590

Oh sorry, diese Frage sollte nicht hier rein :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]