matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBeweis eines Exponentialsatzes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Beweis eines Exponentialsatzes
Beweis eines Exponentialsatzes < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis eines Exponentialsatzes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Do 16.12.2004
Autor: miadeala

Hi!
Also ich shcriebe morgen eine mathe LK klausur und da müssen wir auf jeden fall was beweisen und ich hab etwas gefunden aber weiß nicht genau wie ich das beweisen soll..
also hier der satz:

Jede Exponentialfunktion der Form f(x)= [mm] b^x [/mm]
mit b [mm] \in \IR+\{1}, [/mm] lässt sich mti der Basis e wie folgt darstellen:


f (x)= [mm] e^k*x [/mm] mit k= ln b

Naja.. und das sollen wir beweisen. Ich  kann nciht beweisen ich habe meist einige Fakten udn andere Sätze aber ich weiß nciht wie ich die damit in Verbindeung bringen kann,. z.B. ln [mm] e^x [/mm] = x oder b^log zur basis b y =y
...ich weiß ncih was ich brauche und was nicht.. wäre nett wenn ihr mir helfen könntet!

        
Bezug
Beweis eines Exponentialsatzes: Beweis
Status: (Antwort) fertig Status 
Datum: 14:30 Do 16.12.2004
Autor: Loddar

Hallo Miadeala!

> Jede Exponentialfunktion der Form f(x)= [mm]b^x[/mm]
> mit b [mm]\in \IR+\{1},[/mm] lässt sich mti der Basis e wie folgt
> darstellen:
>  
> f (x)= [mm]e^k*x[/mm] mit k= ln b

Da hats Du Dich wahrscheinlich vertippt. Das muß doch heißen
$f(x) = [mm] e^{k *x} [/mm] = [mm] e^{x * lnb}$, [/mm] oder ?

> Naja.. und das sollen wir beweisen. Ich  kann nciht
> beweisen ich habe meist einige Fakten udn andere Sätze aber
> ich weiß nciht wie ich die damit in Verbindeung bringen
> kann,. z.B. ln [mm]e^x[/mm] = x oder b^log zur basis b y =y

Was sollst du denn zeigen? [mm] $b^x [/mm] = [mm] e^{x * lnb}$ [/mm]
Gehen wir mal den weg von rechts nach links.

[mm] $e^{x * lnb} [/mm] = [mm] e^{ln(b^x)}$ [/mm] wegen $log [mm] a^m [/mm] = m * log a$ (Logarithmengesetz)

[mm] $e^{ln(b^x)} [/mm] = [mm] b^x$, [/mm] weil ln-Funktion und e-Funktion sind einander Umkehrfunktion, d.h. sie heben sich gegenseitig auf.
Oder: $x = [mm] e^{lnx} [/mm] = [mm] lne^x$ [/mm]


Nun alles klar?

Grüße Loddar

Bezug
                
Bezug
Beweis eines Exponentialsatzes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Do 16.12.2004
Autor: miadeala

ja genau das meinte ich, ich wusste nur nich wie man das hier schreibt =/

ja genau so hab ich mir das später auch gedacht aber viele dank trotzdem, hat ja meine überlegung bestätigt juhu =)
bis dann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]