matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis einer Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Beweis einer Ungleichung
Beweis einer Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 18.11.2007
Autor: Jun-Zhe

Aufgabe
Zeigen Sie:
[mm] \vektor{n \\ 2} \ge \bruch{n^{2}}{4} [/mm]

Hallo liebe leute,
[mm] \vektor{n \\ 2} [/mm] ist dieser Binominalkoeffizient und wird definiert durch [mm] \bruch{n!}{(n-2)! *2!} [/mm] . Ich hab mal versucht das ganze via vollständiger Induktion zu lösen, aber komme mittendrin net mehr weiter.

Induktionsanfang:
n=3 : [mm] \vektor{3 \\ 2} \ge \bruch{3^{2}}{4} [/mm]
[mm] \gdw \bruch{6}{2} \ge \bruch{9}{4} [/mm] <- stimmt

Induktionsvor.:
[mm] \vektor{n \\ 2} \ge \bruch{n^{2}}{4} [/mm] gilt für ein festen [mm] n\in \IN [/mm]

Induktionsschluss:
[mm] \bruch{(n+1)!}{(n+1-2)! *2!} \ge \bruch{(n+1)^{2}}{4} [/mm]
[mm] \gdw \bruch{n!*(n+1)}{(n-2)! * (n-1) *2} \ge \bruch{(n+1)^{2}}{4} [/mm]
[mm] \gdw \bruch{n!}{(n-2)! *2} [/mm] * [mm] \bruch{n+1}{n-1} \ge \bruch{(n+1)^{2}}{4} [/mm]

So, hier habe ich die Induktionsvoraussetzung schön stehen, aber irgendwie kann ich hier ja nicht einsetzen wie es bei einer Gleichung der Fall wäre. Mir fehlt also dieser letzte schritt, hoffe ihr könnt mir helfen.

lg jun

        
Bezug
Beweis einer Ungleichung: Tipp zum Binomialkoeffizienten
Status: (Antwort) fertig Status 
Datum: 19:00 So 18.11.2007
Autor: Loddar

Hallo Jun-Zhe!


Es gilt doch: [mm] $\vektor{n\\2} [/mm] \ = \ [mm] \bruch{n*(n-1)}{1*2} [/mm] \ = \ [mm] \bruch{n*(n-1)}{2}$ [/mm] .

Damit sollte der Nachweis doch gelingen.


Gruß
Loddar


Bezug
                
Bezug
Beweis einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:18 Mo 19.11.2007
Autor: Jun-Zhe

Hi Loddar,
Ah danke, den Binomialkoeffizienten soweit aufzulösen, daran hätte ich gar nicht gedacht. Mir fällt aber leider keine Umformung ein wo dabei [mm] n^{2} [/mm] + n [mm] \ge n^{2} [/mm] rauskommt oder sowas in der Art...

Bezug
                        
Bezug
Beweis einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:04 Mo 19.11.2007
Autor: leduart

Hallo
Ich würd die Formel von Loddar nehmen und direkt (ohne Induktion loslegen für
[mm] n\ge2 [/mm]
fang an mit [mm] (n-1)^2>1 [/mm] für n>1
Gruss leduart

Bezug
                                
Bezug
Beweis einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:14 Mo 19.11.2007
Autor: Jun-Zhe

Hi leduart,
da musste ich ja echt lange überlegen bis ich verstanden habe was du mir mit deinem post sagen wolltest, aber ich glaub ich habs jetzt:

[mm] \bruch{n(n-1)}{2} [/mm] = [mm] \bruch{n^2(n-1)^2}{4} [/mm]
da [mm] (n-1)^{2}>1 [/mm] für n>1 gilt nun:

[mm] \bruch{n^2(n-1)^2}{4} \ge \bruch{n^2}{4} [/mm]

Die Lösung kommt mir aber etwas trivial vor, stimmt das denn so?

*edit*
Mir ist grad noch beim Zähneputzen etwas eingefallen. Müsste es nicht [mm](n-1)^{2} \red\ge 1[/mm] für n>1 sein?

Bezug
                                        
Bezug
Beweis einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:00 Mo 19.11.2007
Autor: generation...x

Mach's doch nicht so kompliziert, Induktion ist gar nicht nötig. Du sollst zeigen, dass

[mm]\bruch{n^2 - n}{2} \ge \bruch{n^2}{4}[/mm]

[mm]\gdw n^2 - 2n \ge 0[/mm]

[mm]\gdw n \ge 2[/mm]

Das war's.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]