matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBeweis einer Relation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Beweis einer Relation
Beweis einer Relation < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Do 12.11.2009
Autor: w0elfchen

Aufgabe
Beweisen Sie:
(R1 ∪ R2) ◦ R3 =(R1 ◦ R3) ∪ (R2 ◦ R3)

Hi! Ich habe keine Ahnung wie ich auch nur an diese Aufgabe ran gehen soll.
Mit beweisen hab ich mich schon immer schwer getan.
Könnt ihr mir irgendwie helfen?

mfg w0elfchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis einer Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Do 12.11.2009
Autor: angela.h.b.


> Beweisen Sie:
>  (R1 ∪ R2) ◦ R3 =(R1 ◦ R3) ∪ (R2 ◦ R3)

Hallo,

[willkommenmr].

Diese Aufgabe hat ja bestimmt einen einleitenden Text, in welchem erklärt wird, was es mit den [mm] R_i [/mm] auf sich hat.
Das muß man schon wissen.
Der Überschrift entnehme ich, daß es Relationen sind, aber es würde noch dazugehören auf welchen Mengen und all das, was sonst noch dasteht.

Bevor man sich über die Aufgabe hermachen kann, muß man die Zutaten genauestens klären.

Spontan fallen mir ein:

Was ist eine Relation?
Was sind also [mm] R_1, R_2, R_3? [/mm]

Wie ist die Verkettung [mm] R\circ [/mm] S für Relationen R, S definiert?

Man stellt fest:

bei (R1 ∪ R2) ◦ R3 =(R1 ◦ R3) ∪ (R2 ◦ R3) handelt es sich um die Gleichheit zweier Mengen, die zu zeigen ist.

Zu zeigen ist also, daß jedes Element aus (R1 ∪ R2) ◦ R3  auch in (R1 ◦ R3) ∪ (R2 ◦ R3) liegt,
und daß jedes Element aus  (R1 ◦ R3) ∪ (R2 ◦ R3) auch in  (R1 ∪ R2) ◦ R3  ist.

Aufgrund der zuvor getätigen Überlegungen weiß man, daß Relationen Mengen von Paaren sind.

Somit ergibt sich, daß man zeigen muß

A. [mm] (x,y)\in [/mm] (R1 ∪ R2) ◦ R3 ==> [mm] (x,y)\in [/mm]  (R1 ◦ R3) ∪ (R2 ◦ R3)

b: [mm] (x,y)\in [/mm] (R1 ◦ R3) ∪ (R2 ◦ R3) ==> [mm] (x,y)\in [/mm] (R1 ∪ R2) ◦ R3


>   Ich habe keine Ahnung wie ich auch nur an diese
> Aufgabe ran gehen soll.

Ich habe versucht, Dir ein bißchen die zu leistenden Vorarbeiten klarzumachen.
Oft ist das die Hauptarbeit bei solchen Aufgaben.

>  Mit beweisen hab ich mich schon immer schwer getan.

Am Anfang steht immer die Klärung der Begriffe - sowohl für diejenigen, denen das Beweisen leicht fällt,als auch für die anderen.
Sonst braucht man gar nicht anzufangen.

Man kann nicht damit rechnen, jegliche Aufgabe auf den ersten oder zweiten Blick zu durchschauen. Die Zeiten sind vorbei...

Gruß v. Angela

Bezug
                
Bezug
Beweis einer Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Do 12.11.2009
Autor: w0elfchen

Danke für deine Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]