matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeweis einer Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Beweis einer Gruppe
Beweis einer Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Sa 04.11.2006
Autor: rmtb

Aufgabe
Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm] eine Gruppe ist, wobei [mm] G = \IR \times \IR \backslash \{ 0,0 \} [/mm] und [mm]\circ : G \times G \to G [/mm]
[mm] ((x,y),(x',y')) \mapsto (x*y', x'*y) [/mm]

Hi,
erstmal:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe tun muss, nämlich Assoziativgesetz, inverse Elemente und neutrales Element beweisen. Aber mir ist nicht ganz klar, wie ich das machen soll.
Das Assoziativgesetz sagt ja:
[mm] \forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c) [/mm]
Da G ja [mm] \IR \times \IR \backslash \{ 0,0 \} [/mm]
ist, sage ich

[mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]
und  das  Ganze [mm] \circ c= [/mm]
[mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]

wenn ich jetzt aber
[mm]b \circ c [/mm]rechne
[mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
und dann mm] a [mm] \circ [/mm]  [/mm]das Ergebnis, bekomme ich
[mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]

was ja nicht dasselbe ist. -> keine Gruppe?

Ist das richtig so, oder was habe ich falsch verstanden? Und wie würde ich inverse Elemente bzw. neutrales Element nachweisen, falls es denn eine Gruppe wäre?
Viele Grüße,
Klara

        
Bezug
Beweis einer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 So 05.11.2006
Autor: leduart

Hallo
> Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm]
> eine Gruppe ist, wobei [mm]G = \IR \times \IR \backslash \{ 0,0 \}[/mm]
> und [mm]\circ : G \times G \to G[/mm]
>  [mm]((x,y),(x',y')) \mapsto (x*y', x'*y)[/mm]
>  

> Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe
> tun muss, nämlich Assoziativgesetz, inverse Elemente und
> neutrales Element beweisen. Aber mir ist nicht ganz klar,
> wie ich das machen soll.
>  Das Assoziativgesetz sagt ja:
>  [mm]\forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c)[/mm]
>  
> Da G ja [mm]\IR \times \IR \backslash \{ 0,0 \}[/mm]
>  ist, sage ich
>  
> [mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]

> und  das  Ganze [mm]\circ c=[/mm]
>  [mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]
>  
> wenn ich jetzt aber
> [mm]b \circ c [/mm]rechne
>  [mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
>  
> und dann mm] a [mm]\circ[/mm]  [/mm]das Ergebnis, bekomme ich
>  [mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]

Ich komm durch deine Schreibweise nur schwer durch [mm] (a_1,a_2) [/mm] wäre viel leichter zu lesen. Aber du hast recht und bewiesen, dass es keine Gruppe ist und bist damit fertig!
Gruss leduart

Bezug
                
Bezug
Beweis einer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 So 05.11.2006
Autor: rmtb

Dankeschön! - a.x und a.y kommen vom Programmieren =)
Hat mir sehr geholfen
Klara

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]