matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeweis einer Größer-Relation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Beweis einer Größer-Relation
Beweis einer Größer-Relation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Größer-Relation: Idee
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 22.06.2010
Autor: sackpower

Aufgabe
Die Behauptung für [mm] \{a,p,q\}\in\IN [/mm] , die gezeigt werden soll, lautet:
Ist q>p, dann gilt: [mm] \bruch{p+a}{q+a} [/mm] > [mm] \bruch{p}{q} [/mm]

Ich möchte mathematisch exakt beweisen, dass jeder echte Bruch größer wird, wenn ich zu Zähler und Nenner dieselbe natürliche Zahl hinzuzähle, also beispielsweise:
[mm] \bruch{5+2}{7+2} [/mm] > [mm] \bruch{5}{7} [/mm]

Ich komme bei meiner Beweisführung leider immer zu dem Ergebnis, dass die Größer-Relation gilt, wenn q>p ist, was ich eigentlich vorausgesetzt habe. Begehe ich hier einen Zirkelschluss?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis einer Größer-Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 22.06.2010
Autor: reverend

Hallo sackpower, [willkommenmr]

Es ist leichter zu sehen, worauf Du Dich beziehst, wenn Du die Rechnung mit einstellst.
In diesem Fall ist die aber leicht, und in der Tat ergibt sich nach ganz wenigen Umformungen ja wieder die Voraussetzung.

Das ist kein Zirkelschluss, da die Umformung die Voraussetzung q>p ja gar nicht benötigt hat. Das ist nur eben ihr Ergebnis.

Du hast damit also gezeigt, dass die beiden Aussagen äquivalent sind: Beweis erbracht.

Grüße
reverend

Bezug
                
Bezug
Beweis einer Größer-Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Di 22.06.2010
Autor: pokermoe

Hi

Wenn ich dich richtig verstanden habe , dann formst du die ungl.
um und kommst auf die Voraussetzung.
Überlege mal ob du einfach die umgekehrten Umformungen machen kannst und den Beweis "von hinten nach vorne " lesen kannst.

Gruß

Bezug
        
Bezug
Beweis einer Größer-Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Di 22.06.2010
Autor: steppenhahn

Hallo,

nur noch eine Bemerkung:

[mm] $\frac{p+a}{q+a} [/mm] = [mm] 1-\frac{q-p}{q+a} [/mm] > 1 - [mm] \frac{q-p}{q} [/mm] = [mm] \frac{p}{q}$ [/mm]

(Nenner wird kleiner (a > 0), also wird der Bruch größer und 1-Bruch wird kleiner)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]